
Improving weight-sharing Neural
Architecture Search with a

marginal likelihood estimator

Candidate number: 1047586

University of Oxford

A thesis submitted for the degree of

MSc. Computer Science

Trinity 2021

Word count: 22 008

Abstract

Neural architecture search (NAS) aims to automatize the design of well-

performing neural networks, which have recently proven to be a very in-

fluential class of models. However, the inability to efficiently predict the

generalization performance of a neural network has long been a significant

issue in NAS. We use Sum-over-Training-Losses (SoTL), a recently pro-

posed theoretically-inspired generalization estimator based on Bayesian

model selection, to get a computationally cheap yet accurate estimator of

model performance for modern NAS weight-sharing methods. The stan-

dard generalization estimator is validation accuracy, which was previously

shown to be unreliable for weight-sharing NAS.

We design ways to integrate SoTL into all major classes of weight-sharing

NAS, including discretized one-shot and differentiable NAS. In discretized

one-shot NAS, we show that using SoTL rather than validation accuracy

to rank architectures leads to significantly better rankings with respect

to the ground truth test accuracy as well as higher top-10 performances

of selected architectures. For differentiable NAS, we likewise show that

optimizing SoTL rather than validation loss leads to a more stable search

resulting in better final architectures. Moreover, our experiments using

SoTL challenge several stylized facts about weight-sharing NAS, and we

advance the understanding of those algorithms by providing novel counter-

examples to common NAS assumptions.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis structure . 2

2 Background 3

2.1 Introduction to deep learning . 3

2.2 Neural architecture search . 6

3 Methodology 10

3.1 SoTL . 10

3.2 General NAS experimental setup . 13

3.2.1 Search spaces . 14

3.2.2 Evaluation criteria . 18

3.3 Differentiable NAS . 19

3.3.1 DARTS . 19

3.3.2 Exact SoTL gradient . 23

3.3.3 Approximate SoTL gradient 25

3.3.4 DARTS variants . 26

3.4 One-shot NAS . 27

3.4.1 Integrating SoTL into one-shot NAS 28

3.4.2 One-shot NAS variants . 31

4 Results 33

4.1 Synthetic benchmarks . 33

4.1.1 Gradient-based hyperparameter optimization 33

4.1.2 Weight-sharing linear model 36

4.2 Discretized one-shot NAS . 40

4.2.1 NASBench-201 . 41

4.2.2 NASBench-1shot1 and DARTS search space 46

i

4.2.3 The effect of learning rates . 49

4.2.4 Investigating the bias of high learning rates 53

4.3 Differentiable NAS . 58

4.3.1 NASBench-201 and NASBench-1shot1 58

4.3.2 DARTS search space . 61

4.3.3 Qualitative analysis of the discovered architectures 63

4.3.4 Bias towards shallow architectures 65

4.3.5 Eigenvalues of the architecture Hessian 69

5 Conclusion 73

A SoTL-DARTS implementation 76

B NASBench default hyperparameters 78

Bibliography 79

ii

Chapter 1

Introduction

1.1 Motivation

Neural architecture search (NAS) is an emerging special case of the more general

model selection problem applied to deep learning. Whereas NAS has only become

popular in the last decade following the rapid rise of neural networks into mainstream

machine learning practice, model selection has been an important topic in statistical

inference at least since the early 20th century (Fisher, 1922; Fisher, 1938). However,

the statistical tools developed for model selection in theoretically well-understood

models such as linear regression are generally not applicable to selecting neural net-

work architectures. Separate algorithms thus have to be developed in order to perform

architecture search for deep learning. Furthermore, efficiency is paramount when it

comes to neural networks because training can be very computationally expensive.

In this work, we use the recently proposed Sum-over-Training-Losses (SoTL) met-

ric as an estimator of model generalization capability. This metric has a principled

Bayesian interpretation for linear models and remains practically useful for neural

networks, where it has previously been shown to significantly improve query-based

neural architecture search (Ru et al., 2020). We show how it can be incorporated into

other popular NAS algorithms based on weight-sharing and discuss ways of efficiently

computing gradients of SoTL for use in gradient-based optimization. Our work shows

that SoTL can significantly improve the performance of many state-of-the-art NAS

algorithms such as DARTS (Liu et al., 2018) or SPOS (Guo et al., 2020) while be-

ing robust across datasets (CIFAR10, CIFAR100 and ImageNet) and search spaces

(NASBench201, NASBench-1shot1 and the DARTS search space).

In summary, our main contributions are as follows:

1

• We show that using SoTL instead of validation-based estimators of generaliza-

tion can significantly improve model selection in weight-sharing one-shot NAS,

especially in the context of efficient NAS using early stopping, and alleviate

many of its shortcomings observed in the literature

• By applying SoTL to differentiable NAS algorithms such as DARTS, we demon-

strate that it simultaneously decreases the search cost while improving the final

performance compared to baselines

• Our experiments reveal several interesting discoveries about the implicit biases

of weight-sharing, and we deepen the empirical understanding of both one-shot

and differentiable NAS

1.2 Thesis structure

The rest of the thesis is structured as follows. In Chapter 2, we briefly introduce the

basics of deep learning and review the historical development of NAS to provide a

high-level perspective of the most popular algorithms. A more thorough explanation

of the theoretical background of SoTL is included in Chapter 3 along with a com-

prehensive exposition of the NAS benchmarks we study in this work. Afterward, we

discuss the details of the most popular NAS algorithms to develop an understand-

ing for the challenges of integrating SoTL into those algorithms, and to obtain an

intuition for how using SoTL is expected to improve the results.

In Chapter 4, we show the results of integrating SoTL into several major NAS

algorithms across a multitude of standard benchmarks. We describe the benefits

of SoTL in several small-scale problems to sanity check our approach. Next, the

improvements in performance coming from SoTL in discretized one-shot NAS algo-

rithms are discussed. We also make several novel discoveries regarding the bias of

weight-sharing in one-shot NAS. The last part of the experimental section concerns

applying SoTL to differentiable NAS. We again show that our proposed changes lead

to a better and more stable search across a variety of benchmarks. Moreover, several

intriguing findings are made regarding the behavior of DARTS that notably extend

the scope of understanding in differentiable NAS.

The thesis concludes with Chapter 5, in which we summarize the goals of this

project and their fulfillment. We also reiterate the novel discoveries we have made

and outline several promising research directions for future work.

2

Chapter 2

Background

2.1 Introduction to deep learning

Neural networks are a family of machine learning models which became very popular

in the last decade, but their foundations have already been described in the 20th cen-

tury (Lecun et al., 1998; Rumelhart et al., 1986). Neural networks and the associated

deep learning paradigm have since become ubiquitous and the defacto default choice,

especially when dealing with unstructured, high-dimensional data such as images or

text, where their performance far surpassed that of previous models since early 2010s

(Mikolov et al., 2013; Krizhevsky et al., 2012). We briefly introduce the main build-

ing blocks of neural network architectures that are most commonly used in neural

architecture search, but our exposition will be brief out of necessity. Furthermore,

most NAS algorithms treat the relevant building blocks as black-boxes, and a detailed

understanding is therefore unnecessary. More detail on the basics of deep learning

can be found in textbooks such as (Goodfellow et al., 2016).

In their most basic form, neural networks can be described as a series of neurons

(also called units) that successively apply transformations in the form of

f(wTx + b), (2.1)

where x ∈ RD is the D-dimensional input data, w are the trainable weights, b are

constant terms called the bias and f is called the activation function. A neuron is

equivalent to linear regression when f is the identity function and to logistic regression

when f is the logistic function. In practice, having nonlinear activation functions such

as ReLu (Nair et al., 2010) or various sigmoid functions is crucial for the success of

neural networks.

Furthermore, while linear regression is exactly equivalent to a neural network

with a single neuron and the identity activation function, it is common to stack

3

several layers of neurons in a row, resulting in deep neural networks (DNNs). The

prototypical example is the multi-layer perceptron (MLP) that simply stacks several

neurons using fully connected layers, which apply the transformation in Eq. (2.1) with

some activation function. An example of a multi-layer perceptron with one hidden

layer is shown in Figure 2.1, highlighting the complex connectivity and multiple layers

pattern typical for neural networks.

Figure 2.1: A simple multi-layer perceptron with two input neurons (green), one
hidden layer (blue) and one output neuron (yellow). The edges between neurons
represent input-output connections where each neuron is fully connected to all neurons
in the preceding layer. Reprinted from Mysid (2006).

Various other neuron designs are in wide use. This work mainly concerns Con-

volutional Neural Networks (CNNs), which replace the fully connected pattern in

Eq. (2.1) with only local connections by applying convolutional kernels. The output

of a convolutional layer is sometimes referred to as a feature map. In convolutional

layers, the output dimensions do not depend on the entire preceding feature map

as in multi-layer perceptrons. The input dimensions that a feature map dimension

depends on are referred to as the receptive field, whose size is known as the kernel

size. Moreover, the weights in each kernel are consecutively applied over different

regions of the whole input image, which means that convolutions introduce a form

of parameter sharing. The kernels can be imagined as sliding over the input image,

always applying the convolutional kernel to compute the value in one output dimen-

sion at a time. A visualization of the convolutional operation can be seen in Figure

2.2. The size of the receptive field is an important parameter of convolutional layers,

and it is generally explicitly written out in the layer description such as Conv 3× 3,

meaning a 3× 3 receptive field. It is typical to stack multiple convolutional kernels,

the count of which determines the number of output channels.

Convolutional neural networks have shown to be particularly successful when

working with image data. Similar to multi-layer perceptrons, an empirically proven

4

Figure 2.2: An illustration of the connectivity pattern in convolutional layers. Each
dimension in the output feature map (blue) is connected to only a small square region
in the input (red). In order to compose the whole output feature map, the receptive
field would slide across the input and repeatedly apply the kernel. Reprinted from
Convolutional neural network (2021).

network design is to simply stack a number of convolutional cells to form a deep net-

work. Several of the most famous neural networks such as ResNet (He et al., 2016) or

Transformers (Vaswani et al., 2017) are examples of this cell-stacking design. CNNs

also frequently use other operations such as skip connections (He et al., 2016), which

simply apply the identity operation to make it easier to propagate gradients over long

distances in the network, and various kinds of pooling such as max pool or avg pool,

which are similar to convolutions but they output either the maximum or the average

of the receptive field.

Deep neural networks are popular because of their remarkably high generalization

performance on unseen data. Even though they are typically heavily overparame-

terized and have up to billions of parameters (Brown et al., 2020), they generalize

very well despite being trained on datasets many times smaller than the number of

parameters. The reasons for this remain poorly understood despite being a very ac-

tive area of research (Jiang et al., 2020; Arora et al., 2018; Neyshabur et al., 2015).

Other machine learning models such as kernel-based methods (Schölkopf et al., 2002)

or decision trees (Breiman, 2001) might also be able to perfectly fit the training data,

but often fail to match the generalization performance of neural networks, especially

on high-dimensional data such as those in computer vision or natural language pro-

cessing (Mikolov et al., 2013; Krizhevsky et al., 2012). We further discuss the issue of

deep learning generalization together with a Bayesian point of view relevant to SoTL

in Section 3.1.

5

2.2 Neural architecture search

The objective of Neural Architecture Search is to automatically find a neural network

design that achieves the best possible generalization performance. Architecture search

was initially treated as a direct subset of hyperparameter optimization and optimized

with the same approaches, using techniques such as random search (Bergstra et al.,

2012), Bayesian optimization (Snoek et al., 2012; Snoek et al., 2015) or bandit-based

algorithms (Li et al., 2018b). However, the architecture search spaces in these ap-

proaches were heavily constrained, and architectures were evaluated by training from

scratch, which led to a very slow and inefficient search.

Earliest specialized NAS algorithms (Real et al., 2019; Zoph et al., 2018) still

relied on training each architecture from scratch, which ended up costing thousands

of GPU days for each search run. However, increased focus on engineering the search

space meant that the best discovered architectures were able to achieve state-of-

the-art performances on selected benchmarks. In particular, the focus on cell-based

search spaces introduced in NASNet (Zoph et al., 2018) has been widely adopted by

subsequent literature. The success of repeating identical cells to form a network was

already discussed in Section 2.1. The cell-based design is particularly important for

NAS since it is then only necessary to search for a single cell rather than the whole

network, which significantly shrinks the search space.

Another major milestone for NAS was the introduction of weight-sharing, which

tries to train all architectures at once by sharing weights in a large supernetwork,

and it has allowed to significantly amortize the cost of searching in a large search

space. In order to develop an intuition for the weight-sharing idea, we introduce

several toy examples of what it might look like in practice. First, imagine a fully

connected layer in which the architectural choice is whether to apply tanh or ReLu

nonlinearity, meaning the layer output is either tanh(Wx + b) or ReLu(Wx + b).

When doing architecture search via weight-sharing, the W and b weight matrices

would be exactly the same in both tanh(..) and ReLu(..), Only a single network is

then trained (i.e. the supernetwork) that alternates between using tanh and ReLu so

that the network accommodates both options at the same time. Non-weight-sharing

NAS would train two separate networks using either tanh or ReLu before performing

the model selection. As a more realistic example, imagine a large network with 20

layers with the first 19 layers fixed. The goal is to find the best generalizing option

for the 20th layer among layers A and B. To do that, weight-sharing would again

train only a single network with the first 19 layers shared and have the network

6

alternate between using layer A and layer B as the final layer. This leads to the final

supernetwork weights being an average of sorts between the weights that would be

obtained from training only with layer A and only with layer B. The choice between

layers A and B corresponds to two separate architectures within the architecture

search. Both toy examples are equivalent to what is known as single-path one-shot

NAS, which is one of the most popular weight-sharing NAS algorithms.

The weight-sharing training protocol implicitly assumes that it is possible for the

supernetwork training to accommodate all the individual architecture subnetworks

with a single set of weights, and the role of the search algorithm is to both efficiently

train the supernetwork and then extract the final best architecture. Algorithms fol-

lowing this paradigm were able to bring the search cost down to single digit GPU days

while often also improving the search performance (Bender et al., 2018; Liu et al.,

2018; Pham et al., 2018). The two major classes of weight-sharing algorithms are

one-shot and differentiable NAS algorithms, respectively. We briefly introduce them

now before discussing them in detail in Chapter 3.

Training the supernetwork comes with its own challenges, and we first describe

the issues faced by the main differentiable NAS algorithms. DARTS (Liu et al.,

2018) trains all the supernetwork weights at once using a linear relaxation, which

requires storing the computational graph of all architectures in memory at once. This

severely limits the size of the supernetwork that can be searched. In the toy example

with a 20 layer network above, DARTS would correspond to the network having two

replicas of the 20th layer so that the network’s forward/backward pass happens across

both branches simultaneously rather than alternating between them. In practice,

this also leads to a large discretization gap where the performance of architectures

evaluated using the shared weights is not representative of their performance when

trained separately using standard training protocols. Various modifications of the

baseline DARTS algorithm have been proposed to alleviate the memory concerns

(Chen et al., 2019), regularize training protocol to avoid large discretization gaps

(Zela et al., 2019; Xu et al., 2019), reparameterize the architecture encoding (Chen

et al., 2021; Chu et al., 2020) or use complex search algorithms to extract the final

standalone architecture from the supernetwork (Wang et al., 2021). Nonetheless, the

supernetwork optimization appears to be biased towards easy-to-train architectures

(Shu et al., 2020) and the search performance can be unstable (Dong et al., 2020).

On the other hand, one-shot algorithms such as Single-Path One-Shot (Bender

et al., 2018; Guo et al., 2020) only train one architecture (referred to as a single-

path through the supernetwork) at a time, which reduces the overall memory costs of

7

training the supernetwork to be equivalent to training a single architecture. However,

those algorithms often fail to find top-performing architecture candidates. The final

architecture selection usually proceeds by randomly sampling a number of architec-

tures from the search space and computing their validation accuracy using weights

inherited from the supernetwork. However, the ranking produced by reusing the su-

pernetwork is usually poorly correlated with rankings based on the performance of

architectures trained from scratch. This has been attributed to interference caused

by sequential training of multiple architectures referred to as multi-model forgetting,

alluding to its similarity to continual learning (Zhang et al., 2020a; Benyahia et al.,

2019). Similar to the DARTS case, various inherent biases appear consistently present

in single-path training, which biases the supernetwork towards certain operations and

good-but-not-great architectures, causing rank disorder (Bender et al., 2018; Zhang

et al., 2020b; Zhang et al., 2020b).

Even when the single-paths are sampled non-uniformly by using differentiable

samplers based on the Gumbel-Softmax trick (Dong et al., 2019b; Xie et al., 2019) or

other greedy sampling schemes (Dong et al., 2019a; You et al., 2020), the performance

often falls short of differentiable NAS algorithms using the whole supernetwork. Inter-

estingly, search spaces that are specially designed to minimize interference can achieve

state-of-the-art performances in the search space without any additional training as

all the subnetworks come out of the supernetwork fully trained (Yu et al., 2020a; Cai

et al., 2019b).

For clarity, we note that one-shot simply means that only a single network is

trained by the NAS search algorithm. As such, even DARTS (Liu et al., 2018)

is sometimes referred to as one-shot, and similarly, algorithms using differentiable

samplers are sometimes referred to as differentiable NAS rather than one-shot as we

outlined above. For the purpose of this work, we will use the term differentiable

NAS to refer to DARTS and other close variants that aim to jointly train all the

architectures within the supernetwork, whereas one-shot will refer to NAS algorithms

that only train single-paths at a time. The exact difference between DARTS and one-

shot will be made clear in Section 3.3 and Section 3.4, respectively.

Despite the efforts to produce efficient NAS, random search has been shown to be

a strong and consistent baseline (Li et al., 2020). Because the correlation between

supernetwork and standalone performance of architectures is often weak or even neg-

ative, trying to exploit the supernetwork can effectively be equivalent to random

search (Yang et al., 2020; Singh et al., 2019; Yu et al., 2020c). That said, NAS has

proven to be particularly useful when searching for hardware-aware architectures with

8

constraints on latency or parameter count where the current algorithms can produce

strong results compared to purely human-designed architectures (Cai et al., 2019b;

Cai et al., 2019a).

Our work on using SoTL tackles the problem of ranking single architectures in

the one-shot scenario and of making the search in differentiable NAS properly favor

the best generalizing architectures. There has been a recent surge of interest in im-

proving the gradient computation in DARTS-like approaches (He et al., 2020; Zhang

et al., 2021a) as well as the development of cheap yet effective estimators of archi-

tecture generalization performance (Abdelfattah et al., 2021; Mellor et al., 2021). In

comparison to generalization estimators most commonly used in NAS practice such

as early-stopped validation accuracy (Zoph et al., 2018; Pham et al., 2018; Li et al.,

2018b), reduced model size (Real et al., 2019; Liu et al., 2018) or model-based archi-

tecture performance predictors (Domhan et al., 2015; Baker et al., 2017; Siems et al.,

2020), the SoTL estimator typically offers higher fidelity of performance estimates at

lower cost. Our work shows that SoTL can be incorporated into virtually all popular

types of weight-sharing NAS algorithms, thus alleviating many of the long-standing

issues in NAS.

9

Chapter 3

Methodology

In this section, we first provide more detail on the motivation of Sum-over-Training-

Losses (SoTL) in Section 3.1 and discuss the NAS-specific benchmark datasets that

we use in Section 3.2. We also explain in detail the two most influential families of

NAS algorithms, namely DARTS (Liu et al., 2018) and variants in Section 3.3 and

the discretized one-shot algorithms in Section 3.4. Most notably, we describe our

approach for integrating SoTL into those algorithms.

3.1 SoTL

First, we define the Sum-over-Training-Losses (SoTL) metric and explain its im-

portance as an estimator of optimization speed, and then show it has a principled

Bayesian interpretation in specific settings as an estimate of the marginal likelihood

used for Bayesian model selection.

In its basic form, Sum-over-Training-Losses simply sums over all the training losses

during a model’s optimization. Let D = {(x1, y1), (x2, y2), .., (xn, yn)} be the training

dataset, fθt(xi(t)) represent a model’s output for the training sample xi(t) in the t-th

iteration with θt being the model weights at time t, L be a loss function and T be

the total training iterations. We define SoTL as:

SoTL =
T∑
t=1

L(fθt(xi(t)), yi(t)). (3.1)

Summing over a shorter period, typically one full epoch, has been shown to better

correlate with generalization than summing over the entire history (Ru et al., 2020).

Therefore, whenever we refer to computing SoTL in the rest of the manuscript, we

will implicitly refer to the estimator computed over the last epoch unless otherwise

specified. Furthermore, we note from Eq. (3.1) that SoTL can be interpreted as

10

the area under the training loss curve. Because of this property, SoTL depends on

model quality over the optimization trajectory, which contrasts with common model

selection practices such as using the validation accuracy of only the final network

weights. SoTL can subsequently be interpreted as a measure of training speed since

a low value of SoTL implies that the training loss has been decreasing quickly during

the whole training rather than only being low at the end.

Next, we discuss the connection between training speed and generalization. Gener-

alization of deep neural networks has been an active research area in recent literature,

and a large number of theoretically motivated estimators have been proposed (Arora

et al., 2018; Long et al., 2020; Bartlett et al., 2017; Neyshabur et al., 2015). Those

try to provide generalization bounds that would upper-bound the test error based

on measures computed using only the training set. However, a large-scale study by

Jiang et al. (2020) shows that the bounds are usually too loose to be empirically

useful, or they might even be negatively correlated to generalization in practice. In

fact, it is frequently observed that overparameterization of neural networks increases

generalization rather than decreases it, which is in direct contrast to what many

generalization bounds would predict.

Jiang et al. (2020) further show that a class of measures relying on the properties

of optimization tend to be successful consistently. In particular, the number of iter-

ations taken to reach 0.1 cross-entropy loss has a strong and robust correlation with

generalization. Nakkiran et al. (2020) have shown that the observations about train-

ing speed determining generalization hold even for very large contemporary models

such as Vision Transformers (Dosovitskiy et al., 2021) or Image-GPT (Chen et al.,

2020a).

Next, we summarize the Bayesian interpretation of SoTL, which provides a theo-

retically principled connection between training speed and generalization (Lyle et al.,

2020). For a dataset D, model M and its parameters θ, the marginal likelihood in

Bayesian statistics is defined as:

P (D|M) =

∫
θ

P (D|θ,M)P (θ|M)dθ. (3.2)

The marginal likelihood computation involves integrating over the model parameters

θ, and it is specified both by defining the model form M and the weights prior

P (θ|M). Using the marginal likelihood, one would typically choose the model Mi

with the highest value of P (D|Mi). It is possible to explicitly compare the posterior

11

probabilities of two models by computing the Bayes factor (MacKay, 2002):

p(M1|D)

p(M2|D)
=
p(M1)

p(M2)

p(D|M1)

p(D|M2)
(3.3)

From the form of the Bayes factor in Eq. (3.3), we see that it involves a ratio of prior

model probabilities p(Mi) and a ratio of marginal likelihoods p(D|Mi). If we assume a

uniform prior over the models p(Mi) ∝ 1 , which reflects no prior knowledge on which

kind of model should be preferred, the Bayes factor is determined solely by the ratio

of marginal likelihoods for the two models. This explains how we can pick the most

probable model, i.e. maximize p(Mi|D), by computing their marginal likelihoods,

and it is sometimes referred to as Type-II maximum likelihood (MacKay, 2002).

Moreover, the formula for model evidence in Eq. (3.2) shows that computing

the integral involves a trade-off between the prior P (θ|M) and the probability of

the data P (D|θ,M). The trade-off arises because choosing a more complex model

class M decreases P (θ|M) since the model now supports a larger class of hypotheses,

and any single one is less likely as the overall probability still has to normalize to 1.

In contrast, having a more complex model makes it possible to fit the data better,

therefore increasing the P (D|θ,M) term. Thus in order to maximize the model

evidence, we should try to have models as simple as possible which still fit the data

as well as possible. This preference for simpler models is also known as Occam’s

factor (Rasmussen et al., 2000).

Building on the assumption that a high marginal likelihood is desirable, we now

show that SoTL represents a lower bound on the marginal likelihood for linear mod-

els. If we abbreviate P (D|M) by P (D) and let D<i = (Dj)
i−1
j=1 represent the first i

samples of the dataset, we can use the probability chain rule to write the log marginal

likelihood as:

logP (D) = log
n∏
i=1

P (Di|D<i) =
n∑
i=1

logP (Di|D<i) =
n∑
i=1

log(EP (θ|D<i)[P (Di|θ)])

(3.4)

If we understand the negative log posterior predictive probability − logP (Di|D<i)

as a loss function, the log marginal likelihood is equal to a sum of losses that were

incurred during training, where the training is represented by successive conditioning

on the data points seen so far in P (·|D<i). Many common loss functions used in

machine learning, such as the mean squared error or cross-entropy loss, have a proba-

bilistic interpretation for a suitably chosen model, thus giving a direct correspondence

between − logP (Di|D<i) and training loss (Murphy, 2012).

12

Lyle et al. (2020) show that the interpretation of SoTL as model evidence lower

bound is exact for Bayesian linear regression. Suppose we have data D = (xi, yi)
N
i=1

generated as Y = θTΦ(X) + ε ∼ N(0, σ2
NI) for unknown θ, known σ2

N and design

matrix Φ. A Gaussian prior is usually placed on θ. It can be shown that sampling

θ from the prior and then optimizing via gradient descent on the data D<i gives

samples from the exact posterior P (θ|D<i) (Matthews et al., 2017; Osband et al.,

2018). Being able to sample from the posterior is required to compute Eq. (3.4) since

it involves an expectation under P (θ|D<i).

In order to compute Eq. (3.4) in practice, we use Jensen’s inequality and write

logP (D) =
n∑
i=1

log(EP (θ|D<i)[P (Di|θ)]) ≥
n∑
i=1

E[logP (Di|D<i)] (3.5)

Therefore, we can approximate L(D) =
∑n

i=1E[logP (Di|D<i)] by drawing k samples

of θ ∼ P (θ|D<i) and using the log likelihoods of our data samples for Monte Carlo

estimation as

L̂(D) =
n∑
i=1

1

k

k∑
j=1

logP (Di|θji) (3.6)

Appealing to our previous interpretation of − logP (Di|D<i) as a loss function

that we seek to minimize, we now get from Eq. (3.5) that a model with lower SoTL

has higher log marginal likelihood lower bound. Note that SoTL corresponds to

the negated RHS of Eq. (3.5) to interpret the relationship correctly. Following the

discussion above, SoTL as an evidence lower bound holds exactly for Bayesian linear

regression. For nonlinear models such as deep neural networks, we use SoTL as a

theoretically inspired metric and show that it remains plausibly useful for model

selection even in this setting.

This explains the Bayesian viewpoint on the connection between training speed

and model selection that we alluded to previously when discussing training speed

purely as an empirically successful generalization estimator.

3.2 General NAS experimental setup

In this Section, we discuss the choice of search spaces for NAS followed by an expla-

nation of the most commonly used evaluation metrics.

13

3.2.1 Search spaces

In Section 2.2, we mentioned that searching for cells rather than whole networks is

ubiquitous in modern NAS research. In fact, all standard NAS benchmark search

spaces involve searching only for the cell design to be used for stacking. Not only has

the cell-stacking design been very successful in human-designed networks (He et al.,

2016; Vaswani et al., 2017), it also greatly reduces the size of the search space in NAS

because we only need to search for a typically small cell compared to searching for

the entire network. Figure 3.1 shows an example network from Real et al. (2019),

which is composed from multiple repeating blocks of normal and reduction cells. As

noted earlier, the output of most NAS algorithms is only the architecture of the

cells themselves rather than the connectivity of the whole network or its stacking

pattern. The macro-skeleton of the final network is usually fixed by human experts

independently of the search.

Figure 3.1: The output of a cell-based NAS algorithm are the normal (middle) and
reduction (right) cells which are stacked into the final architecture (left) in a pre-
determined fashion. Reprinted from Real et al. (2019).

We now describe the precise form of a cell and each of our benchmarked search

spaces in detail. A cell is simply a directed acyclic graph (DAG) consisting of several

nodes, typically below 10. The graph is fully connected, meaning there always is a

directed edge (i, j) between nodes xi and xj. Each edge is associated to an operation

detailing the transformation it applies. In order to search for the topology of the cell,

search spaces tend to explicitly include a zero operation which effectively makes an

edge disappear. The input connectivity to a cell is usually fixed to involve connecting

some of the first few nodes to the output of the previous cell. Likewise, all the

14

intermediate nodes in a cell are combined through either concatenation or sum to

form the output of a cell. Therefore, the general goal is to search for both the

topology of the middle part of the cell and the operations for each edge. The best

found cell is then stacked to form the whole network.

The most popular search space is the one introduced by DARTS (Liu et al., 2018),

which was heavily inspired by the design of the NASNet search space (Zoph et al.,

2018), from which we visualized an architecture in Figure 3.1. In the DARTS case

specifically, each cell has two input nodes set equal to the cell outputs of the previous

two layers, and the output of a cell is obtained by concatenating all the intermediate

nodes. Each intermediate node output is a sum of the corresponding edge operations

o(i,j):

xj =
∑
i<j

o(i,j)(xi) (3.7)

The DARTS search space has eight candidate operations in total, namely zero, skip

connection, 3× 3 and 5× 5 separable convolutions, 3× 3 and 5× 5 dilated separable

convolutions, 3 × 3 max pooling and 3 × 3 average pooling. This search space is

further unique in that it searches for two kinds of cells. It uses both a normal cell

and a reduction cell, in which all operations adjacent to the input nodes are of stride

two. This mimics human expert design of reducing the size of feature maps, which is

standard in computer vision architectures (Simonyan et al., 2015; Krizhevsky et al.,

2012).

The whole architecture encoding can be written as (αnormal, αreduce) where the cell

design αnormal is shared for all normal cells and likewise for the reduction cells. In

total, each cell has 7 nodes. There are two reduction cells in each network positioned

at 1/3 and 2/3 of the total depth. DARTS uses 8 layers for the search supernetwork

and 20 layers for standalone architecture evaluation. While the search space speci-

fication might seem small, the combinatorial nature of constructing the cells means

there are more than 1018 candidate architectures in total. An example normal cell

found by DARTS is shown in Figure 3.2.

In order to examine the robustness of our work across search spaces, we further use

smaller NAS benchmarks from the NASBench series, which we summarize in Table

3.1. Those benchmarks are multiple orders of magnitude smaller in terms of the

total number of different architectures. While this might seem like a disadvantage,

it means that it is possible to exhaustively evaluate each architecture in the search

space, as is the case for NASBench-101 (Ying et al., 2019) and NASBench-201 (Dong

et al., 2020). Those are referred to as tabular benchmarks because they tabulate the

15

Figure 3.2: An example normal cell found by DARTS with two input nodes (green),
four intermediate nodes (blue) and one output node (yellow). The labels above each
edge signal the final chosen operation. c {k-1} refers to the previous cell output.
Reprinted from Liu et al. (2018).

ground truth performances of each architecture trained from scratch to convergence

along with some training curve statistics, all of which can be queried via provided

APIs.

We also use NASBench-301 (Siems et al., 2020), which uses a model-based predic-

tor to predict the test set performance of architectures from the DARTS search space.

Towards this purpose, the authors first trained 60k architectures to convergence on

CIFAR10 and then trained models to predict the performances of all other archi-

tectures in the search space. Using NASBench-301 thus allows studying the search

trajectories for the DARTS space. Note that explicitly training all architectures in the

DARTS space would have been infeasible as it contains more than 1018 architectures.

The NASBench-201 search space is conceptually the same as the one we already

described for DARTS. Each cell is again represented as a DAG, but each graph now

has only 4 nodes. The operation set comprises just 5 operations, which are zero, skip

connection, 1× 1 convolution, 3× 3 convolution and 3× 3 average pooling. Only one

type of cell is searched since the reduction cell architecture is fixed to be a residual

block with stride 2. The schema of the whole NASBench-201 network is shown in

Figure 3.3. In particular, we note that the network starts with a convolutional stem

followed by a block of N searchable cells. Those are followed by the aforementioned

residual block acting as a reduction cell, and the N cell blocks are stacked two more

times in total. The network then finishes with a global average pooling layer.

NASBench-201 has only 15 625 cell candidates in total due to the small number

of nodes and operations set. However, each architecture was trained to convergence

from scratch on all of CIFAR10, CIFAR100 (Krizhevsky, 2012) and ImageNet16-120,

16

a downsampled version of ImageNet (Deng et al., 2009). Each run was repeated for

three random seeds. Both the final test set performance and training curves including

training and validation losses are available to query at each epoch. Notably, this allows

querying the training loss necessary for computing SoTL directly from the dataset

without any further computation. It is therefore possible to evaluate the performance

of SoTL on all architectures in the search space.

Figure 3.3: The macro skeleton (top) and cell structure (bottom) in NASBench-201.
Reprinted from Dong et al. (2020).

The last benchmark we examine is the NASBench-101 (Ying et al., 2019). The

search space is again conceptually similar to that of DARTS. Here, the operations

set only includes three operations: 1 × 1 convolution, 3 × 3 convolution and 3 × 3

max pooling. The number of nodes V is limited to V ≤ 7; in particular, the number

of nodes is not constant as in the previous cases. Likewise, the maximum number

of edges E is limited to E ≤ 9. This gives a total of 423k unique architectures, all

of which are trained from scratch on CIFAR10 using three random seeds and four

different epoch budgets. The total compute time was roughly 120 TPU years. The

reported training statistics include training, validation and test accuracy computed

at four equally spaced out intervals during the training. Importantly, training loss

is not available, and the remaining statistics are only recorded four times during the

training. This makes it impossible to evaluate SoTL the same way as with NASBench-

201 without retraining the architectures.

Another issue with NASBench-101 is that there is no immediate way to evalu-

ate weight-sharing algorithms on the search space because of the changing topology

caused by the variable number of nodes and edges. Zela et al. (2020) show that it is

possible to restrict the original search space and construct reduced spaces, which are

usable in weight-sharing algorithms. The NASBench-1shot1 (Zela et al., 2020) dataset

includes three such sub-spaces of NASBench-101. The spaces referred to as Search

17

Search space Narchitectures Noperations Datasets Ground truth

NASBench-201 15 625 5 CIFAR10/100, ImageNet16-120 Exact
DARTS (via NB301) 1018 8 CIFAR10 Predicted
NB101-1 6 240 3 CIFAR10 Exact
NB101-2 29 160 3 CIFAR10 Exact
NB101-3 363 648 3 CIFAR10 Exact

Table 3.1: Overview of all our benchmarked NAS search spaces.

space 1, 2 and 3 contain 6 240, 29 160 and 363 648 architectures out of the original

423k. We will abbreviate those as NB101-1, NB101-2 and NB101-3, respectively.

While tabular benchmarks are very useful for precisely measuring the performance

of NAS algorithms, they come with limitations. In particular, all architectures are

trained using the same training protocol in terms of optimization parameters. There-

fore, it is not obvious if the architectures that perform the best do so because they

generalize the best or because the fixed training hyperparameters were the closest

to optimal for those specific architectures. The same criticism can be applied to

weight-sharing NAS itself because some hyperparameter settings might lead to un-

fair advantages for specific architectures within the supernetwork. Nonetheless, the

fixed hyperparameters setup is common in NAS even outside of the NASBench series

under the assumption that it leads to fair training without overfitting to some of the

architectures.

3.2.2 Evaluation criteria

Several evaluation metrics are in common use for NAS. For the DARTS-family of mod-

els which only output a single candidate best architecture, the mean and standard

deviation of the test set accuracy after standalone training of the selected architecture

is usually reported. Unless otherwise noted, we query the final architecture perfor-

mances from the API of a NASBench series benchmark as explained in Section 3.2.1.

In particular, all search trajectories are constructed by querying the NASBench APIs.

For the DARTS search space, we also retrain the most promising architectures from

scratch following the standard DARTS evaluation protocol to make our results compa-

rable to prior work. This is necessary because NASBench-301 offers only approximate

test set accuracies for DARTS space architectures.

Furthermore, when using one-shot algorithms such as SPOS (Guo et al., 2020)

or RandomNAS (Li et al., 2020), it is possible to produce a ranking for any sub-

set of architectures in the search space rather than just outputting the best one. In

18

those cases, we randomly sample a number of architectures from the search space and

evaluate the ranking proposed by generalization estimators against the ground truth

ranking based on test set accuracy queried from the APIs. As estimators, we com-

pare SoTL against a minibatch training loss (TLMini), minibatch validation accuracy

(ValAccMini) and whole validation set accuracy (ValAcc). We report Spearman cor-

relation, which has been used in a number of prior NAS works (Dong et al., 2020;

Ying et al., 2019), between the two rankings as the main quantity of interest. Other

popular choice for evaluating the ranking quality is Kendall’s τ (Chu et al., 2019; Yu

et al., 2020c). We also report the average test set accuracy of the top-10 selected

architectures. Other hyperparameters for one-shot NAS evaluation are described at

the beginning of Section 4.2.

An issue when measuring correlations is that ranking distinct architectures can be

difficult when their true performances are very close, which is necessarily going to be

the case for large search spaces (e.g. the DARTS search space, which has 1018 candi-

date architectures). This can lead to poor correlations between the rankings proposed

by search algorithms and the ground truth ranking. However, it bears no practical

significance as all the misranked architectures are very close in their generalization

performance. This is particularly relevant for evaluations based on NASBench-301,

which uses a model-based predictor for estimating test set performance. The approx-

imate predictions introduce another source of noise to the architecture ranking. One

possible solution to those problems is to ignore rank disorders when the difference in

performance is very small, which can be accomplished by using metrics such as sparse

Kendall’s τ (Yu et al., 2020b).

3.3 Differentiable NAS

3.3.1 DARTS

We now introduce DARTS (Liu et al., 2018) in detail as it is one of the most popular

differentiable weight-sharing NAS algorithms. Next, we discuss the main challenges

of incorporating SoTL into differentiable NAS and our proposed solutions. Finally,

we briefly highlight the other state-of-the-art DARTS variants that we benchmark in

our work to show the broad applicability of our method.

Earlier NAS algorithms such as NASNet (Zoph et al., 2018) or REA (Real et

al., 2019) generally train single architectures separately, and the contribution of the

NAS algorithm is in choosing which architectures to evaluate via mechanisms such

as reinforcement learning or evolutionary algorithms. In contrast, DARTS trains all

19

architectures jointly. It does so by relaxing the architectural constraints on having a

single operation per edge to a softmax over the possible operations:

o(i,j) =
∑
o∈O

exp(α
(i,j)
o)∑

o′∈O exp(α
(i,j)
o′)

o(x), (3.8)

where O is the operations set and α(i,j) are the learned softmax coefficients on an

edge (i, j) with dimensionality |O| to represent the architecture encoding. Intuitively,

the cell DAG has multi-edges between each pair of nodes (i, j), in which each single

edge represents one operation from the operations set.

At the end of training, the discrete architecture can be obtained via argmax on

each edge, and then retrained separately from scratch. DARTS explicitly picks the

top two strongest incoming edges at each node as the retained connections. The

network with multi-edges in the cell DAG is referred to as the supernetwork, and a

visualization of the continuous relaxation is shown in Figure 3.4. Because softmax is

differentiable, we can optimize the continuous architecture parameter α by gradient

descent. In order for the discretized architecture to have good performance, it is

implicitly assumed that the most useful edge operation o will simultaneously have

the highest weight α
(i,j)
o in the softmax at the end of optimization.

Figure 3.4: The evolution of a DARTS cell during optimization. In (a), we first
initialize the network. In (b), all the edges are initialized with the same weights
in the architecture softmax for fairness. (c) shows the state after training where
the most useful operations on each edge are in bold. (d) displays the final discretized
architecture after we drop all the insignificant edges. Reprinted from Liu et al. (2018).

20

DARTS formulates architecture search as a bi-level optimization problem similar

similar to meta-learning (Finn et al., 2017) or gradient-based hyperparameter op-

timization (Luketina et al., 2016). Let Ltrain and Lval be losses on the train and

validation set, respectively. The goal is to find the optimal architecture encoding α∗

such that Lval is minimized at the optimal weights w∗, which are only trained on the

training set. This leads to the following problem formulation:

min
α

Lval(w
∗(α), α) (3.9a)

s. t. w∗(α) = argminwLtrain(w, α) (3.9b)

Eq. (3.9a) is referred to as the outer loop while Eq. (3.9b) is called the inner

loop. The outer loop is usually optimized by gradient descent, which means descend-

ing ∇αLval(w
∗, α) in this case. The inner loop is also typically optimized via gradient

descent. However, computing the optimal weights w∗ is equivalent to training the

network to convergence after every outer loop architecture update, which is compu-

tationally prohibitive. A common solution (Finn et al., 2017; Luketina et al., 2016)

is to approximate w∗ by taking a single SGD step from the current weights w after

each change in the outer loop variables. Therefore, the outer problem is equivalent

to minimizing Lval(w− η∇wLtrain(w, α)) for a given learning rate η. We shall denote

w − η∇wLtrain(w, α) as ŵ∗. The iterative procedure is described in Algorithm 1.

Algorithm 1: DARTS - Differentiable Architecture Search

Create mixed operations o(i,j) parameterized by α(i,j) for each edge (i, j)
while not converged do

1. Approximate the optimal weights w∗ with one step of SGD by
computing ŵ∗ = w − η∇wLtrain(w, α);

2. Update architecture α by descending ∇αLval(ŵ
∗, α);

3. Update the original weights by descending ∇wLtrain(w, α) using the
new architecture encoding α;

end

Notably, Step 2 in Algorithm 1 involves unrolled differentiation through the SGD

update in Step 1. We can approximate the exact gradient by computing

∇αLval(w
∗(α), α) ≈ ∇αLval(w − η∇wLtrain(w, α), α). (3.10)

Applying the chain rule shows that the computing the architecture gradient necessi-

tates second order derivatives:

∇αLval(w − η∇wLtrain(w, α), α) = ∇α(w − η∇wLtrain(w, α))∇wLval(ŵ
∗, α) +∇αLval(ŵ

∗, α)

= (−η∇2
α,wLtrain(w, α))∇wLval(ŵ

∗, α) +∇αLval(ŵ
∗, α)

(3.11)

21

Algorithm 2: First-order DARTS

Create mixed operations o(i,j) parameterized by α(i,j) for each edge (i, j)
while not converged do

1. Approximate the optimal weights w∗ with one step of SGD by
computing ŵ∗ = w − η∇wLtrain(w, α);
2. Update architecture α by descending ∇αLval(w, α);
3. Update the weights by descending ∇wLtrain(w, α) using the new
architecture encoding;

end

The main difficulty is computing the matrix-vector product∇2
α,wLtrain(w, α))∇wLval(ŵ

∗, α).

In common DARTS implementations, this is done by the method of finite differences.

Let ε be a small scalar and w± = w ± ε∇wLval(ŵ
∗, α), then we can approximate the

matrix-vector product by a central difference as:

∇2
α,wLtrain(w, α))∇wLval(ŵ

∗, α) ≈ ∇αLtrain(w+, α)−∇αLtrain(w−, α)

2ε
(3.12)

We note that the computation above assumes that the optimal weights w∗ can

be obtained with a single SGD step from the current weights w, and the unrolled

differentiation accordingly involves only a single Jacobian-vector product. For this

reason, the DARTS training loop is sometimes referred to as one-step unrolled differ-

entiation. Moreover, it is not necessary to use finite differences to approximate the

Jacobian-vector product, and it can be computed exactly using automatic differentia-

tion packages readily available in common deep-learning frameworks such as PyTorch

(Paszke et al., 2019). Changing the gradient computation procedure will turn out to

be crucial for integrating SoTL into DARTS as we discuss in Section 3.3.2.

Finally, Liu et al. (2018) have also proposed to sidestep the requirement to com-

pute second-order derivatives by setting the unrolling learning rate η = 0, which

implies that ŵ∗ = w. In this setup, Step 1 in Algorithm 1 is thus unnecessary, and we

get the so called first-order DARTS, in which we simply alternate between updating

the architecture and the weights in a block coordinate-ascent optimization. First-

order DARTS is significantly faster compute-wise due to no Jacobian-vector product

computations as well as not making multiple passes over the same data as in Steps

1 and 3 of normal DARTS. However, it empirically achieves lower performance. We

highlight the changes compared to normal DARTS in Algorithm 2, and we will some-

times explicitly refer to normal DARTS as the second-order DARTS to differentiate

it from first-order DARTS.

22

3.3.2 Exact SoTL gradient

In order to integrate SoTL into DARTS, we would like the outer loop to optimize the

architecture to minimize SoTL rather than Lval, and to do so with a fixed discretized

architecture encoding that would serve as the final searched architecture. The problem

formulation can be restated as:

min
α

SoTL =
T∑
t=1

Ltrain(f(xt, wt, α), yt) (3.13a)

where f(xt, wt, α) is the model’s output using the weights wt and architecture α. We

will refer to the training trajectory over T steps in Eq. (3.13a) as the unrolled training

history or simply the unrolling to directly appeal to the relationship with unrolled

differentiation. Importantly, the architecture α stays fixed during the unrolling be-

cause our goal is to pick a single architecture that would perform well in the sense of

having low SoTL when trained from scratch.

The principal issue with optimizing SoTL in unrolled differentiation is that cal-

culating the exact gradients ∇αSoTL is computationally prohibitive in terms of both

memory and compute time. To see this, we assume we optimize the weights by SGD

updates, which means that the weights at a specified time step T optimized from

initial w0 can be written as:

wT = w0 − η
T∑
t=0

∇wLtrain(f(xt, wt, α), yt) (3.14)

With this in mind, we will now compute the final training loss gradient after T iter-

ations ∇αLtrain(f(xT , wT , α), yT) as the first step to computing the SoTL gradients,

where we abbreviate Ltrain(f(xT , wT , α), yT) as LTtrain:

∇αL
T
train =

∂LTtrain
∂α

+
∂LTtrain
∂w

∂wT
∂α

(3.15)

The
∂LT

train

∂α
is sometimes referred to as the direct gradient, and the

∂LT
train

∂w
∂wT

∂α
is also

known as the indirect gradient or hypergradient. Now given the expression for wT

given in Eq. (3.14), we calculate

∂wT
∂α

=
∂

∂α
(wT−1 − η

∂LT−1train

∂w
)

=
∂wT−1
∂α

− η(
∂2LT−1train

∂w∂α

∂α

∂α
+
∂2LT−1train

∂w∂w

∂wT−1
∂α

)

= −η∂
2LT−1train

∂w∂α
+ (I − η∂

2LT−1train

∂w∂w
)
∂wT−1
∂α

(3.16)

23

The ∂wT−1

∂α
at the end of Eq. (3.16) gives a recurrent relation that can be further

expanded to give

∂wT
∂α

= −η∂
2LT−1train

∂w∂α
+ (I − η∂

2LT−1train

∂w∂w
)(−η∂

2LT−2train

∂w∂α
+ (I − η∂

2LT−2train

∂w∂w
)
∂wT−2
∂α

)

= −η∂
2LT−1train

∂w∂α
− η(I − η∂

2LT−1train

∂w∂w
)
∂2LT−2train

∂w∂α
+

∏
0≤k<2

[I − η∂
2LT−k−1train

∂w∂w
]
∂wT−2
∂α

(3.17)

If we unroll the whole history until w0, for which it holds ∂w0

∂α
= 0, we get a string of

summands that can be summarized as

∂wT
∂α

= −η
∑

0≤j≤T

([
∏

0≤k<j

I − η∂
2LT−k−1train

∂w∂w
]
∂2LT−j−1train

∂w∂α
) (3.18)

In total, we have that Eq. (3.15) is equivalent to

∇αL
T
train =

∂LTtrain
∂α

+
∂LTtrain
∂w

(−η
∑

0≤j≤T

([
∏

0≤k<j

I − η∂
2LT−k−1train

∂w∂w
]
∂2LT−j−1train

∂w∂α
)) (3.19)

This is the exact unrolled differentiation hypergradient using the last training loss.

The SoTL gradient computed over T steps of training is simply equal to a sum of the

individual training loss gradients:

∇αSoTL =
T∑
t=0

(
∂Lttrain
∂α

+
∂Lttrain
∂w

(−η
∑
0≤j≤t

([
∏

0≤k<j

I − η∂
2Lt−k−1train

∂w∂w
]
∂2Lt−j−1train

∂w∂α
))) (3.20)

Computing the gradient in this way is infeasible for DARTS primarily due to

excessive memory requirements when using reverse-mode auto-differentiation as in

PyTorch (Baydin et al., 2018a). The formula in Eq. (3.19) requires access to the

weights wt at all time steps, which means they must be stored with O(T) space

complexity. However, DARTS is already strongly memory constrained, and the search

model size is artificially kept low to fit into single GPU memory. This is known to

be a bottleneck since the end goal is to search for large models (Liu et al., 2018; Xu

et al., 2019). Hence decreasing the model size in order to be able to do more steps

of unrolling might even lead to worse results overall. Moreover, training with longer

unrolling T is much slower since Eq. (3.19) also has a nested sum-product giving

O(T 2) Jacobian-vector products that must be calculated.

24

3.3.3 Approximate SoTL gradient

Due to the infeasibility of exact unrolled differentiation, we propose an approximation

scheme for the SoTL gradient. Specifically, we use a first-order approximation equiv-

alent to only considering the dependence of wt on parameters at time step wt−1 for

all the gradients in the sum. This is similar to how first-order DARTS only calculates

the architecture gradients with respect to the final unrolled weights, which avoids the

second-order derivatives that come in when computing gradients with respect to the

initial weights. The difference in our approach is that we optimize SoTL rather than

a single validation loss. Effectively, we only consider the direct gradient
∂LT

train

∂α
out of

the exact formula in Equation (3.19), giving:

∇αL
t
train ≈

∂Lttrain
∂α

(3.21)

The whole SoTL gradient can therefore be written as

∇αSoTL = ∇α(L0
train + L1

train + ..+ LTtrain) ≈
T∑
t=1

∂Lttrain
∂α

(3.22)

This approximation is equivalent to summing first-order architecture gradients

over an unrolled training history, which has several advantages. Most importantly, it

does not require storing any extra weights parameters apart from the latest weights

at each time step because every summand in the gradient can be computed alongside

the weights gradients in backward passes. In fact, no additional computation on top

of normal training is needed since the backward passes for training the weights can

also compute the architecture gradients at virtually no extra cost. It is thus possible

to compute the SoTL gradients over arbitrarily long training history with no concern

for either space or time complexity.

Moreover, we optimize the SoTL objective in Eq. (3.13a) iteratively for computa-

tional reasons. Rather than retraining the model from scratch after every architecture

update as would be necessary for computing the entire SoTL, we run training only

over a short period to compute the SoTL gradient and keep the weights from the last

iteration of the algorithm as the initialization for the next iteration together with

updated architecture parameters. The rest of our algorithm proceeds the same as in

second-order DARTS.

In this work, we usually compute the approximate SoTL gradients over T =

100 timesteps. Since the architecture gradients are always accumulated over 100

steps before being used to update the architecture, our proposed algorithm does 100x

25

fewer architecture updates than the original DARTS for the same number of epochs.

However, the SoTL gradient is a sum (rather than an average) of gradients over 100

hundred loss terms, so its magnitude is approximately 100 times larger than normal to

naturally compensate for the less frequent updates compared to baseline DARTS. We

summarize the new training procedure in Algorithm 3 and show an example PyTorch

code in Appendix A to highlight the ease of implementation.

Algorithm 3: SoTL-DARTS

Create mixed operations o(i,j) parameterized by α(i,j) for each edge (i, j)
Set T=100 steps of unrolling for computing SoTL
while not converged do

1. Approximate the optimal weights w∗ with T steps of SGD by
computing wT = w0 − η

∑T
t=0∇wLtrain(f(xt, wt, α), yt);

2. Update architecture α by descending SoTL gradient via Eq. (3.22);
3. Update the original weights with T steps of SGD
wT = w0 − η

∑T
t=0∇wLtrain(f(xt, wt, α), yt) using the new architecture

encoding;
end

3.3.4 DARTS variants

In order to assess the robustness of SoTL gradients, we integrate our estimator into

several more recent DARTS variants, namely DrNAS (Chen et al., 2021) and PDARTS

(Chen et al., 2019). In general, the adaptation of DARTS-like algorithms is always

virtually the same as outlined in SoTL-DARTS (Algorithm 3). Most DARTS-like

algorithms only slightly modify the forward pass by using a different parameterization

of the network. That is, they only modify the wt and α while the loss L and datapoints

(xt, yt) remain the same when considered in the SoTL formula

SoTL =
T∑
t=1

Ltrain(f(xt, wt, α), yt). (3.23)

However, when using software with automatic differentiation support such as PyTorch

(Paszke et al., 2019), the required gradients are computed automatically, and we

simply aggregate them over T steps as in the normal SoTL-DARTS. The model is

used as a black-box for the SoTL gradient calculation, and hence there is no change

in the SoTL implementation regardless of how the DARTS search supernetwork is

parameterized. This highlights that our approximate SoTL gradient is very simple to

integrate on top of existing codebases.

26

We summarize the main idea behind each of the DARTS variants that we bench-

mark:

• DrNAS (Chen et al., 2021) reformulates the operation mixing weights α as

a Dirichlet distribution learning problem rather than viewing them mechani-

cally as softmax coefficients. The αs are treated as random variable samples

from Dirichlet q(α|β), and we now optimize the distributional parameters β via

pathwise derivatives.

• PDARTS (Chen et al., 2019) proposes to alleviate a problem known as the

depth gap, which refers to the different number of layers used in DARTS for the

search and evaluation phases. The lower search depth is necessary to prevent

DARTS from taking too much memory. In PDARTS, the number of layers

during the search becomes larger over time while the least important operation

edges are simultaneously deleted from the search space. The memory consump-

tion is thus kept constant even as the network grows.

3.4 One-shot NAS

While DARTS trains the whole supernetwork including all candidate architectures at

once, other weight-sharing algorithms such as ENAS (Pham et al., 2018) or SPOS

(Guo et al., 2020) sample single discrete architectures and only optimize the weights

that belong to the chosen subnetwork in each iteration. This leads to |O|-times less

memory usage since we only keep one edge from the DARTS multi-edge graph for

each forward/backward pass. ENAS uses a reinforcement learning controller which

tries to learn to sample the best performing architectures so that they are trained the

most frequently. This assumes that the architecture subnetworks which have the best

standalone performance also have the best performance with the shared weights from

the supernetwork. Such an assumption is similar to how DARTS implicitly relies on

the most useful edges also having the highest softmax weights.

Bender et al. (2018) show that the greedy sampling in algorithms such as ENAS

is not necessary, and it suffices to train randomly sampled architectures at each step

in order to attain good results. After the supernetwork finishes training, the best

architectures are extracted by sampling N architectures and evaluating their valida-

tion accuracy using the shared supernetwork weights. The total cost of evaluating an

architecture is therefore equal to one mini-batch forward pass. This kind of training

protocol is often referred to as one-shot NAS. A randomly sampled architecture cell is

27

shown in Figure 3.5, which is referred to as a choice block since it involves repeatedly

choosing an operation edge in the cell DAG.

Figure 3.5: An example of a sampled architecture in one-shot NAS. Only the opaque
edges were sampled to be kept while the grayed out edges are zeroed out, which effec-
tively discretizes the supernetwork into a single architecture subnetwork. Reprinted
from Bender et al., 2018.

Bender et al. (2018) also include a carefully tuned path Dropout (which we will

refer to as DropPath), which drops out a percentage of incoming paths to a node.

At the start of the training, the DropPath probability is kept low, which means that

almost the whole supernetwork is kept active at each iteration. However, the dropout

rate is increased over time to make the network ready for the eventual discretiza-

tion, preventing excessive weight co-adaptation. The co-adaptation issue is caused

by training multiple architectures at once, which then learn to rely on each other’s

weights that stop being available after the supernetwork is discretized into a single

architecture. This issue is also present in DARTS. Furthermore, the memory require-

ments in this setup are still high as most of the supernetwork might be kept active

in the early parts of training. Li et al. (2020) instead only ever sample individual

architectures without any DropPath schedule. Even this setting is shown to have

competitive results on the DARTS search space despite being conceptually very sim-

ple, and it is more stable in practice because it further reduces weight co-adaptation.

It is also very efficient in terms of compute and memory since the forward/backward

pass only updates a single architecture’s weights at any point during the training.

3.4.1 Integrating SoTL into one-shot NAS

In this section, we discuss two ways in which we integrate SoTL into one-shot NAS,

both by using it as a high fidelity generalization estimator and by highlighting a

28

connection between SoTL and meta-learning.

First, we reiterate on architecture selection in one-shot NAS. The most common

way to extract the best candidate architecture out of a one-shot supernetwork is

to evaluate some moderately large subset (typically a few hundred or thousands)

of architecture subnetworks by computing their validation accuracy on a minibatch.

The architectures chosen for evaluation can be sampled randomly (Li et al., 2020),

by evolutionary algorithms (Guo et al., 2020) or reinforcement learning (Pham et

al., 2018). In order to use SoTL, we replace evaluating the selected architectures

by their validation accuracy and instead shortly train (e.g. for 100 minibatches)

the architectures separately while using the supernetwork weights as initialization.

This makes it possible to calculate SoTL, which cannot be done without additional

training. We then rank the sampled architectures by SoTL and pick the best. Using

the supernetwork initialization makes each architecture immediately reach the early-

to-mid phase of training, which leads to large compute savings compared to training

architectures completely from scratch. In Section 4.2, we show that even this short

amount of training is very effective in combination with SoTL. Moreover, we also

show that using SoTL this way is often computationally faster than computing the

validation accuracy using the whole validation set (which might be composed of a

similar or higher amount of minibatches than 100) and significantly more accurate

than using just one validation minibatch. Hence search algorithms usually take less

time to reach a threshold accuracy using SoTL than if they relied on validation metrics

even though the SoTL computation itself comes with additional training.

Second, we propose to reformulate one-shot NAS as a meta-learning problem and

optimize the supernetwork with gradient-based meta-learning algorithms (Finn et al.,

2017; Nichol et al., 2018; Zhou et al., 2019). We first introduce the general meta-

learning setup, which can be understood as training a model that can quickly adapt

to a new task using only a few training iterations. This is often referred to as few-shot

learning (Finn et al., 2017). The meta-learned weights of the model in question are

known as the meta-weights. An example task in few-shot image classification might

be to achieve high accuracy on a new image class such as dogs after only training on

class samples of other animals, such as cats. The meta-classifier has to learn features

that generalize well for them to transfer across different tasks.

Next, we note that there are several similarities between meta-learning and one-

shot NAS with SoTL. In line with the first integration of SoTL we proposed above,

we would like to be able to train each sampled subnetwork architecture from the one-

shot supernetwork for only a small amount of minibatches before it reaches its full

29

performance, which would allow us to rank it accurately. We can understand the su-

pernetwork as meta-weights since it provides initialization to the sampled architecture

subnetworks the same way that the meta-weights are used as initialization for each

task in meta-learning. The architecture subnetworks themselves can be understood

as the tasks since we aim for rapid few-shot adaptation of each architecture. There-

fore, the one-shot NAS setup is analogous to the more general meta-learning setup

outlined above. Moreover, in large enough search spaces such as the DARTS search

space, we are unlikely to ever randomly sample the same architecture twice, which

shows that the supernetwork must learn features that generalize across architectures

(i.e. tasks) for one-shot NAS to work at all.

Furthermore, first-order meta-learning algorithms such as Reptile (Nichol et al.,

2018) or MetaMinibatchProx (Zhou et al., 2019) implicitly use the same approximate

SoTL gradients as our work, which we now show. While the seminal work on MAML

(Finn et al., 2017) used a similar bi-level optimization scheme as DARTS with a

train-validation split, the first-order algorithms only use a training split. The Reptile

gradient for updating the meta weights is set to be the direction from the meta-

weights to the post-adaptation weights, ie. ∇Reptile
w = θ̂∗ − θ. The whole algorithm is

shown in Algorithm 4.

Algorithm 4: Reptile in One-shot NAS

Initialize one-shot supernetwork;
Set T (e.g. 4) inner loop adaptation steps;
while not converged do

1. Sample task (ie. subnetwork architecture) and a minibatch of training
data;

2. Update inherited supernetwork weights θ to θ̂∗ by T optimizer steps on
the sampled minibatch as within-task adaptation;

3. Update the original supernetwork weights θ ← θ + ηouter(θ̂
∗ − θ)

end

Intuitively, Reptile first trains the weights on the target task and then moves the

meta-weights in the direction of the final weights. This is equivalent to descending our

proposed approximate SoTL gradient when training with SGD. To see this, consider

the within-task SGD update wt+1 = wt + ηinner∇wL
t
train. The weights after T steps

can be expressed as

wT = w0 + ηinner

T−1∑
t=0

∇wL
t
train (3.24)

30

The Reptile gradient in this setting is equivalent to wT−w0 = ηinner
∑T−1

t=0 ∇wL
t
train,

which is the same as the approximate SoTL gradient from Equation (3.22) up to

rescaling by the learning rate ηinner.

If we consider the supernetwork itself to be the meta-weights as discussed pre-

viously, then training the one-shot supernetwork using Reptile should also minimize

the subsequent SoTL during finetuning of individual architectures. In fact, if we view

one-shot NAS as meta-learning, it should be possible to use arbitrary meta-learning

algorithms to effectively optimize the supernetwork. We demonstrate that this is pos-

sible and matches the performance of various NAS-specific state-of-the-art one-shot

training protocols in Section 4.2.

3.4.2 One-shot NAS variants

Apart from the basic Single-Path One-Shot algorithm (Guo et al., 2020; Li et al.,

2020), we also benchmark several proposed variants to demonstrate the wide appli-

cability of SoTL. Specifically, we test the following algorithms:

• FairNAS (Chu et al., 2019) averages gradients after first sampling a subset

of architectures that utilizes all the operations from the operations set on each

edge. The total amount of architectures sampled at each step is thus equivalent

to the number of operations in the search space since each sample reduces the

number of remaining operations by one. For the DARTS search space, we first

sample the topology of the cell before sampling the operations on each edge.

• MultiPath (Yu et al., 2019) averages gradients from several randomly sampled

architectures before doing a weight update. We sample four architectures at a

time.

Among meta-learning algorithms, we test Reptile, which we described above, and

MetaMinibatchProx (which we will refer to as Metaprox for brevity):

• MetaMinibatchProx (Zhou et al., 2019) is very similar to Reptile except

that the within-task optimization has the addition of proximal regularization.

The loss is modified to also include an L2 penalty term λ
2
||θ̂∗ − θ||2 for some

coefficient λ. Intuitively, this penalizes task solutions that move far away from

the meta-weight initialization. We use λ = 10.

31

For both Reptile and Metaprox, we use four steps for the within-task adaptation.

Furthermore, we note that if we understand sampling architectures as sampling tasks

for meta-learning purposes, algorithms such as FairNAS or MultiPath can be inter-

preted as increasing the meta-batch size. The meta-batch size is simply the number of

tasks sampled at each iteration of meta-learning training. Then because of the corre-

spondence between architectures and tasks, sampling four architectures in MultiPath

is equivalent to sampling four tasks at a time. Therefore, it is possible to combine

Reptile with MultiPath to get Reptile with four within-task steps and meta-batch

size equal to four. From this point of view, both FairNAS and MultiPath can also be

understood as Reptile that only does one inner step with variable meta-batch size.

However, combining MultiPath and Reptile as in the previous example would multi-

ply the compute required 16× compared to normal SPOS, and we use a meta-batch

size of one for our experiments with meta-learning algorithms due to computational

reasons. We only try to combine MultiPath and Metaprox on NASBench-1shot1 and

show that its performance exceeds other state-of-the-art algorithms. Investigating

other ways to combine meta-learning and one-shot NAS is an exciting direction for

future work.

32

Chapter 4

Results

4.1 Synthetic benchmarks

In order to check the basic applicability of SoTL in gradient-based optimization, we

design several simple benchmarks to compare it against optimizing the validation

loss. First, we reproduce experiments proposed by Baydin et al. (2018b) for online

adjusting of the learning rate as a special case of gradient-based hyperparameter

optimization. Next, we devise a feature selection experiment using a weight-sharing

version of linear regression that serves as a toy NAS problem.

4.1.1 Gradient-based hyperparameter optimization

We showcase the broad utility of SoTL gradients by reproducing online learning rate

finetuning experiments proposed by Baydin et al. (2018b). While the SoTL gradients

in this setup lack the interpretation as model selection because training hyperparam-

eters are generally not considered to be a part of the model, it is still possible to show

that unrolled differentiation over training losses can exceed the performance of opti-

mizing validation loss. Most gradient-based hyperparameter tuning literature focuses

on one-step unrolled differentiation using the same bi-level formulation with train-

validation split as in DARTS (Luketina et al., 2016; Baydin et al., 2018b). Some other

prior work tries to optimize the hyperparameters over very long unrollings (Maclaurin

et al., 2015; Fu et al., 2016). In fact, the challenges related to gradient-based hyperpa-

rameter optimization are exactly the same as in DARTS, where we can interpret the

architecture parameters as a special kind of hyperparameters. Hence, improvements

in the gradient computation in either problem are likely to transfer to the other.

Baydin et al. (2018b) propose to finetune the optimizer’s learning rate online by

treating it as a differentiable parameter rather than fixed or manually changed using

33

a scheduler as in normal training. Assuming SGD update to weights θt with an

objective function f and learning rate η, we have

θt = θt−1 − η∇θf(θt−1) (4.1)

Because the update with respect to the learning rate is differentiable, we can compute
∂θt
∂η

and update the learning rate with SGD. The gradient can be expressed by applying

the chain rule as

∂f(θt−1)

∂η
= ∇θf(θt−1) ·

∂(θt−2 − η∇θf(θt−2))

∂η
= ∇θf(θt−1) · (−∇fθ(θt−2)) (4.2)

Using the gradient for the learning rate, we can apply SGD or any other gradient-

based optimizer to update it. In practice, the gradient in Eq. (4.2) would not be

computed by hand but instead obtained automatically using automatic differentiation

packages the same way that the weights themselves are trained. Therefore, it is also

trivially possible to finetune other optimization hyperparameters that are only used

in a differentiable fashion during the training, such as momentum or L2 weight decay

coefficient. However, we only finetune the learning rate in this Section as a proof of

concept to demonstrate the applicability of SoTL.

We note that the gradient computation in Eq. (4.2) assumes one-step unrolled

differentiation so that ∂θt−2

η
= 0. This means that we only differentiate through

two steps of the training history. We relax this assumption in order to compute

SoTL gradients over significantly longer unrollings. We again denote the length of

unrolling as T , which corresponds to the number of training losses involved in SoTL.

The rest of our algorithm proceeds as in second-order DARTS (Algorithm 1), where

we can imagine the learning rate η to be the architecture α. Furthermore, Baydin

et al. (2018b) already compute the learning rate hypergradients with respect to the

training data rather than validation data in contrast to DARTS and other gradient-

based hyperparameter tuning algorithms (Liu et al., 2018; Luketina et al., 2016;

Maclaurin et al., 2015; Finn et al., 2017). Their setup is thus roughly equivalent to

SoTL gradients with T = 2. Our contribution is in showing that having higher T

leads to an even stronger performance.

Our main experiments involve training an MLP on MNIST with one hidden layer

using 1000 units with 1.8M parameters total, and a VGGNet (Simonyan et al., 2015)

on CIFAR10 with 138M parameters total. We vary T from 2 up to 250 for computing

SoTL. Because the models involved here are relatively small, we compute the SoTL

gradient exactly using automatic differentiation even over long unrollings.

34

(a) MLP on MNIST (b) VGGNet on CIFAR10

Figure 4.1: a) Test set accuracy of an MLP with one hidden layer on MNIST during
training while simultaneously finetuning the learning rate. Optimizing SoTL increases
generalization performance. b) Training a VGG Net on CIFAR10. Because the model
parameter count is large, we can only benchmark the unrolling up to T = 10, which
still increases performance compared to T = 2.

For all experiments, we initialize the weights learning rate to 1e-3. The weights

learning rate is intentionally set to a lower value than in human-expert derived train-

ing protocols to highlight the learning capability of benchmarked algorithms. We also

fix the architecture learning rate to 1e-2. We clip the architecture gradients norm to

10 as we found the training to be unstable especially in the first few epochs, for which

the large architecture steps led to divergence. Moreover, the architecture updates

might make the learning rate negative. In those cases, we override the update and

instead set ηt+1 = ηt/2. This situation happens particularly often in later stages of

the training when it is no longer possible to improve the performance by keeping

learning rates high.

Figure 4.1a shows the test accuracy of the MLP on MNIST during training for

various values of T up to 250. Higher T markedly improves the convergence speed

and final test accuracy, and the performance improvement keeps scaling even towards

the highest T . Setting T = 150 or T = 250 allows the training to reach 98.3%

test accuracy within 20 epochs, whereas using T = 2 only reaches 96.4% after 50

epochs. Figure 4.1b shows training of a VGGNet on CIFAR10. Because VGGNet is

much larger in terms of parameters, we were only able to evaluate unrolling of length

T = 10. Nonetheless, there is a clear advantage in doing so, and it leads to better

test set accuracy again. It appears that higher T alleviates the short-horizon bias

in gradient-based hyperparameter optimization (Wu et al., 2018), which makes the

learning rate decrease too quickly for lower T and slows down training.

35

4.1.2 Weight-sharing linear model

The linear model feature selection follows the setup from Lyle et al. (2020) with the

addition of weight-sharing to make it reminiscent of a small-scale NAS problem. The

general problem definition is as follows. We construct a synthetic dataset (X,Y)

with feature vectors xi ∈ RD where yi = w1x1 + w2x2 + .. + wkxk = wTxi and

w = {w1, w2, .., wk, 0, 0, .., 0} ∈ RD. In other words, only the first k features from

the feature vector xi determine the values of y while the remaining D − k features

are noise since the corresponding weights are zeroed out. The goal is to find the true

value of k. This can be seen as a form of architecture search if we consider each

possible value of k as a different architecture. More generally, this problem can also

be understood as feature or model selection.

Lyle et al. (2020) have already shown that by retraining the linear model separately

for each value of k, it is possible to correctly recognize the ground truth model since it

will have the lowest SoTL. This directly appeals to the theoretical motivation of SoTL

from Section 3.1, in which it was shown that SoTL in the linear model case directly

corresponds to an evidence lower bound. This lower bound can then be applied in

Bayesian model selection. In order to make the model selection be gradient-based,

we instead propose a continuous relaxation similar to DARTS.

First, we introduce the concrete linear model example used in this experiment.

The data points xi will be the first D Fourier series terms written out in the sine-

cosine form with a separate dimension for each period length. Precisely, a data point

is formed by performing feature expansion from scalar xi to a high-dimensional vector

xi as

xi = {a0, cos(2πxi)+sin(2πxi), cos(2π2xi)+sin(2π2xi), .., cos(2πDxi)+sin(2πDxi)} ∈ RD

(4.3)

The targets yi are set equal to

yi = a0+
k∑
j=1

(ajcos(2πjxj)+bjsin(2πjxj)) = a0+
k∑
j=1

(cos(2πjxj)+sin(2πjxj)), (4.4)

where we set all the ground truth Fourier series coefficients ai and bi to 1, and also

k < D. The model f(xi) = wTxi is just a linear regression with learnable weights w.

The goal is to properly identify the true Fourier series degree k in the presence of D

features, where the D− k highest level terms are noise since they are independent of

the target values in Eq. (4.4).

36

Figure 4.2: Training a linear model on the synthetic Fourier data with various fixed
values of k, the maximum Fourier series degree. The model with k = 3, which matches
the ground truth, trains the fastest and achieves the lowest SoTL.

We generate a synthetic regression dataset by randomly sampling 10 000 points in

the range [−10, 10]. Those points play the role of scalar xi in Eq. (4.3), which we then

expand to the full feature vectors and compute the target values as in Eq. (4.4) using

a ground truth Fourier series degree of k = 3. In order to sanity-check our approach,

we first train linear models with fixed Fourier series degree similar to the example

by Lyle et al. (2020). We set kfixed ∈ {0, 1, 3, 5, .., 21} as the maximum Fourier term

degree to be used for training and zero out the weights for the remaining terms.

Figure 4.2 shows that the linear model with kfixed = 3 achieves the lowest SoTL

while other models train slower because they either underfit or overfit the training

data. Therefore, model selection via SoTL would succeed in picking out the ground

truth model.

It is not immediately possible to search for the ground-truth Fourier series degree

k with gradient descent because the sum in Eq. (4.4) is discrete. In order to use

gradient-based methods, we reformulate the problem as a differentiable ordered fea-

ture selection. Our base model is still a linear regression, but we add a differentiable

parameter MaxDeg that will represent the architecture. MaxDeg approximates the

maximum selected degree of Fourier features, i.e. the upper range of the summation

k. The new model output f(x) is a variant of linear regression, and it is made equal

37

to

f(xi) = w0·fσ(MaxDeg−0)·a0+
D∑
j=1

(wj ·fσ(MaxDeg−dj)·(cos(2πjxj)+sin(2πjxj)))

(4.5)

where fσ is a sigmoid function, for which we specifically use fσ(x) = (tanh(x) + 1)/2.

The dj are constants d = (0, 1, 2, 3, ..., D) representing the degree of a feature, which

is determined by the corresponding summation index j in Eq. (4.5), hence dj = j.

We first discuss the desiderata of the function fσ, and then show how our choice

of the function fulfills them. The goal is to make the feature selection be ordered

so that MaxDeg can actually be interpreted as the maximum degree of a Fourier

series. If it was just regular feature selection, it would be possible to pick terms

from the Fourier series of arbitrary degree. For example, the algorithm might select

sin(x), sin(2x), sin(4x) without picking sin(3x), which does not respect the order of

terms in the Fourier series sum.

Even in the ordered feature selection setting, the true model is still realizable

because the ground truth data was generated in the ordered fashion as indicated by

Eq. (4.4). Hence (i) we would like fσ(MaxDeg − dj) ≈ 1 if MaxDeg − dj ≥ 0 and

fσ(MaxDeg − dj) ≈ 0 if MaxDeg − dj < 0 so that all terms with dj > MaxDeg do

not affect the model output in Eq. (4.5). Remember that dj represents the Fourier

degree of a feature. fσ thus behaves like a step function centered around the value of

MaxDeg, which can be continuously approximated with a sigmoid function. Next,

(ii) it is desirable for the training of MaxDeg to be influenced only by the terms with

the degree closest to MaxDeg. Otherwise, it would be viable to increase MaxDeg for

the purpose of picking some very high-order term while actually not being interested

in the preceding terms. This is undesirable for ordered feature selection.

Choosing fσ(x) = (tanh(x) + 1)/2 fulfills both (i) and (ii). Because tanh is a

sigmoid function, it approximates a step function as required by (i). We also shift the

range of tanh from (−1, 1) to (0, 1) by using (tanh+ 1)/2 rather than just tanh. For

(ii), note that the fσ(MaxDeg − dj) is a multiplicative term that multiplies weights

wj by a near-zero term for dj > MaxDeg since fσ(x) ≈ 0 when x < 0. Therefore,

the weights wj that correspond to Fourier series terms that are of higher degree than

the parameter MaxDeg are attenuated to near zero and have almost no influence

on the predictions. In turn, the gradients corresponding to those weights are almost

zero as well. For the low-order Fourier series terms, we instead have fσ(x) ≈ 1 when

x ≥ 0, so those weights are fully used. Even with the low-order terms, the parameter

MaxDeg is still trained almost exclusively in relation to the weights wfloor(MaxDeg)

38

(a) Fixed T = 25 (b) Degree initialization = -1

Figure 4.3: a) Training with SoTL using fixed T = 25. Regardless of whether the
Fourier series degree initialization is too high or too low, it still converges to the
ground truth value. b) SoTL has higher speed of convergence for higher T after
fixing the initial degree to -1. This degree corresponds to including zero Fourier
series terms (not even the constant).

and wfloor(MaxDeg)+1 because the gradients for all other weights are highly saturated

as a result of using a sigmoid function. The degrees dfloor(MaxDeg) and dfloor(MaxDeg)+1

are the only parameters close to the center of the sigmoid fσ(MaxDeg−d), and thus

their corresponding weights are the only ones with high gradients. Therefore, the

property (ii) is also fulfilled.

The experiment can be interpreted as ordered feature selection because MaxDeg

will only increase if the next closest unselected feature results in gradients that in-

crease MaxDeg. The feature selection happens at discretization, where we choose

the first n terms with degree dj ≤MaxDeg. Ideally, MaxDeg at the end of training

should be close to the ground-truth Fourier series degree k so that n ≈ k and we

only select the terms which were used for computing the target values in Eq. (4.4).

The value of MaxDeg is prevented from ever rising too high by setting L2 weight

decay on the architecture parameter MaxDeg, which is equivalent to a Gaussian

prior over the Fourier series degree (Murphy, 2012). This sets up the problem as

Bayesian linear regression that we discussed in Section 3.1. It is necessary to penalize

excessively complex models as it would otherwise be possible to set MaxDeg very

high and simply set all the high-order terms weights equal to zero.

Figure 4.3 shows the result of gradient-based architecture selection in the same

experimental setup as before with ground truth degree k = 3. In Figure 4.3a, we test

initializingMaxDeg to different values both below and above the ground truth degree.

We see that the model converges towards the true degree in all cases. The convergence

39

is significantly faster when using SoTL gradients with higher lengths of the unrolling

T . This is shown in Figure 4.3b, where we instead fix the MaxDeg initialization at

-1. SoTL also outperforms optimization using the one-step validation loss (denoted

as T = 2 (val)). We remark that the performance of lower T for SoTL and validation

loss optimization can likely be improved by finetuning the hyperparameters, such as

increasing the hypergradient learning rate. However, we found higher T with lower

learning rate to be more stable than lower T with higher learning rate. Additionally,

SoTL with T = 2 still strongly outperforms validation loss optimization, but T = 2

corresponds to essentially the same hyperparameter setup as in the validation loss

baseline since both algorithms then compute the hypergradients over two iterations

at a time.

Our results for the weight-sharing linear model help motivate applying SoTL to

modern weight-sharing NAS. Even though SoTL has theoretical guarantees only for

stand-alone linear models, we have shown that it retains strong performance in the

weight-sharing linear regression case. In Sections 4.2 and 4.3, we show that it is useful

in practice even for large-scale NAS.

4.2 Discretized one-shot NAS

In order to demonstrate the strong performance of SoTL when used as a generalization

estimator in discretized one-shot NAS, we first compare it against a range of validation

set based metrics in Section 4.2.1 on NASBench-201, and then on NASBench-1shot1

and NASBench-301 in Section 4.2.2. We observe several intriguing phenomena about

the bias of weight-sharing, which we investigate in detail in Sections 4.2.3 and 4.2.4.

In order to evaluate performance improvements of SoTL, we first randomly sample

a set of architectures from the relevant search space. The architectures are then kept

fixed across all experiments for the specific search space. Doing so makes the resulting

ranking correlations and top-k performances comparable across different algorithms.

We sample 200 architectures for NASBench-201 and NASBench-1shot1, and 350 for

the DARTS search space because it is by far the largest. Each supernetwork training

algorithm is run for three seeds to produce three supernetworks used to obtain the

mean and standard deviation for all metrics. After the supernetwork training finishes,

we train each sampled architecture individually for 300 minibatches. The additional

training will be referred to as the finetuning. We compare SoTL against a minibatch

training loss (TLMini), minibatch validation accuracy (ValAccMini) and whole val-

idation set accuracy (ValAcc), which is only computed once every 100 minibatches

40

for compute reasons. For all of those, we compute the Spearman rank correlation be-

tween the ranking proposed by each metric and the ground truth ranking computed

from the test set performances provided by the respective NASBench API. In tables,

we report SoTL after 100 minibatches training and the remaining metrics without

any finetuning (i.e. using the inherited supernetwork weights directly) to make them

equivalent to the standard one-shot evaluation protocols (Dong et al., 2020; Guo et

al., 2020). We also show the performance of the top-10 architectures selected by each

metric.

The main training hyperparameters are kept constant across algorithms for fair-

ness of evaluation. The most important parameters are batch size 64 and learning

rate of 0.01 for basic SPOS, which is decreased to 0.001 for SPOS variants. The lower

learning rate reflects that the supernetwork is significantly better trained, and using

too high learning rates causes catastrophic forgetting. We discuss hyperparameter

choices in detail in Section 4.2.3. The whole finetuning procedure is significantly

slower than the default evaluation proposed by Dong et al. (2020) and Li et al. (2020)

who use a single validation minibatch accuracy to evaluate each architecture. How-

ever, the entire finetuning generally takes less time than the supernetwork training

and at most a couple of hours on modern GPUs.

4.2.1 NASBench-201

NASBench-201 (Dong et al., 2020) is unique among NASBench series in that it pro-

vides the training loss for each architecture at every epoch, which makes it possible

to evaluate SoTL by querying the API without any actual training. Apart from this,

we also test the performance of SoTL when used to select the best architectures out

of a supernetwork after additional short training of each candidate architecture.

While the original NASBench-201 (Dong et al., 2020) only included networks

trained on CIFAR10 along with evaluation of transfer to CIFAR100 and ImageNet16-

120, the later version called NATS-Bench (Dong et al., 2021) has training curves

for all datasets separately. Furthermore, it includes a 200-epoch training schedule

alongside a shorter 12-epoch one. We first evaluate the correlations on each dataset

while training each architecture from scratch by randomly sampling 200 architectures

for 10 random seeds and querying their training statistics at each epoch from the

provided API.

Figure 4.4a shows the Spearman correlation curves between rankings proposed

by various metrics and the ground truth test set performance for CIFAR10 training

in the 200 epochs schedule. SoTL is significantly better correlated with the test

41

(a) 200 epochs training schedule (b) 12 epochs training schedule

Figure 4.4: We notice a significant difference between training for 200 and 12 epochs
schedules on NASBench-201 when using cosine annealing in both cases. For a) with
the 200 epochs training, SoTL has a significantly higher correlation than validation
statistics in the first 150 epochs before validation accuracy overtakes it. For b) with
12 epochs total, SoTL is still the best but only by a narrow margin which further
closes as the training progresses.

set performance than validation metrics until around 150 epochs into the training,

after which the performance of SoTL decreases slightly. Ru et al. (2020) attributed

this to many architectures having near-zero training loss towards the end of training

and effectively overfitting CIFAR10. For efficient NAS, it is desirable to stop the

training of individual architectures as early as possible to save compute, which makes

it possible to evaluate more architectures in total. Using SoTL is clearly superior

for this purpose as it significantly outperforms validation accuracy early on in the

training, and the regime in which SoTL is outperformed by validation accuracy would

never be reached in early-stopped NAS. In particular, SoTL reaches 90% correlation

within 50 epochs, while validation accuracy needs around 120 epochs to do so.

We also investigate the 12-epoch training schedule on CIFAR10 in Figure 4.4b,

which shows several discrepancies from the 200-epoch schedule. All the training

parameters, including cosine learning rate schedule, are the same apart from the

total number of epochs. Interestingly, the gap between SoTL and validation accuracy

is now much smaller and gets increasingly tighter. Nonetheless, we again see that

SoTL has a better correlation early on and maintains this advantage until the end of

training. Because the networks do not overfit CIFAR10 in only 12 epochs, we never

see validation accuracy overtaking SoTL.

Ultimately, the final correlations in the 12-epoch schedule are around 75%, which

is equivalent to the values that the longer training schedule reaches at epoch E ≈ 10.

42

(a) CIFAR100 (b) ImageNet16-120

Figure 4.5: Training NASBench-201 architectures from scratch on CIFAR100 and
ImageNet16-120 is mostly similar to training on CIFAR10. Notably, SoTL rank corre-
lation with the ground truth performance does not decrease at the end of ImageNet16-
120 training.

However, SoTL has over 15% better correlation than validation accuracy in the 200-

epochs schedule at that point, whereas the difference in the final epoch of the 12-epoch

schedule is only about 1%. It appears that the faster learning rate annealing in the 12-

epoch schedule decreases the performance differential between SoTL and validation

metrics. Based on those results, we hypothesize that the size of learning rates heavily

influences the efficacy of SoTL, and we provide additional supporting evidence to this

in Section 4.2.3.

We also investigated the 200-epoch schedule for CIFAR100 and ImageNet16-120 in

Figure 4.5a and Figure 4.5b, respectively. For the most part, the results are the same

as when training on CIFAR10. Notably, the correlations for SoTL rise even faster

now, and it is possible to reach 90% Spearman correlation between proposed rankings

and ground truth test set performance within only about 20 epochs of training. Even

though the CIFAR100 SoTL correlation curve still shows a slight decrease towards

the end of training, there appears to be no decrease at all for ImageNet16-120. This

further suggests that this phenomenon is driven by overfitting on easier datasets when

using long training schedules, and is not a practical concern for efficient NAS that

uses early stopping.

Next, we introduce the results obtained by finetuning individual architectures that

inherit weights from the supernetwork trained by the one-shot algorithms we described

in Section 3.4. Using the supernetworks as initialization amortizes the cost of training

each architecture from scratch thanks to the weight-sharing as each architecture will

have already received a baseline level of training by the time we start collecting SoTL,

43

(a) SPOS and multiple metrics (b) Multiple algorithms with SoTL

Figure 4.6: a) shows Spearman correlations of different metrics to the ground truth
test set performance on NASBench-201 during finetuning. SoTL has both the high-
est correlation and lowest variance. The whole set validation accuracy (ValAcc) is
only computed once every 100 minibatches to save compute. In b), we compare the
correlations of SoTL across different one-shot training algorithms.

and it is not necessary to train for as long before good rank correlations are achieved.

The success of SoTL even in this setup helps motivate applying it to DARTS, which

we do in Section 4.3.

First, we show the correlation curves of all the metrics of interest using basic SPOS

training in Figure 4.6a. Similar to the training-from-scratch case shown previously,

the ranking based on SoTL has a much stronger correlation with the ground truth

test set performance than those of other metrics, including the whole validation set

accuracy. Even a single minibatch training loss tends to have a correlation slightly

above that of minibatch validation metrics. In fact, the additional training decreases

the correlation between validation metrics and the ground truth while SoTL and

minibatch training losses slightly improve over time. SoTL maintains a correlation

level of around 78% whereas whole validation set accuracy gradually drops below

70% percent. The minibatch statistics have high variance correlation coefficients that

average at 70% and 60% for training loss and validation accuracy, respectively.

Next, we compare various one-shot training algorithms by measuring the corre-

lations of SoTL during finetuning of their respective supernetworks in Figure 4.6b.

Namely, we compare the basic SPOS (Guo et al., 2020; Li et al., 2020), FairNAS (Chu

et al., 2019) and MultiPath (Yu et al., 2019) as one-shot NAS algorithms from prior

work. We additionally benchmark Reptile (Nichol et al., 2018) and MetaMinibatch-

Prox (Zhou et al., 2019) (which we refer to as Metaprox for brevity) as meta-learning

algorithms based on the discussion in Section 3.4.2. The exact tabular results for all

44

algorithms and all metrics are shown in Table 4.1.

All the SPOS variants significantly improve on the SoTL correlations by up to 10%

compared to SPOS, with MultiPath having the best result overall at around 90.5%.

Interestingly, SPOS has the best top-10 performances out of all algorithms across

all datasets despite having weaker overall correlations. This suggests that ranking

all architectures in the search space and ranking only the best architectures is not

necessarily the same task. Algorithms such as FairNAS are explicitly motivated by

making the training fairer for all architectures in the search space, but it appears

the supernetwork gets naturally biased towards the best performing architectures

otherwise, which makes the top-10 easier to select. Hence even though prior work

identifies poor ranking correlation as a major drawback of SPOS (Zhang et al., 2021b;

Bender et al., 2018), it appears possible to achieve good top-k performance while

simultaneously having weak correlations across the entire search space. This also

occurs on our other benchmarked search spaces, and it agrees with the recent results

of Zhang et al. (2021b), who also show that all the SPOS variants hardly improve

top-k performance. We note that the strong performance of SPOS in top-10 selection

is strongly related to the chosen learning rate, and we discuss this in detail in Section

4.2.3.

From Figure 4.6, we can also see that finetuning for longer than 100 minibatches

has almost no effect on the correlation levels while linearly increasing the training

time. Training a NASBench-201 architecture for 100 minibatches takes around 4.5s

on average, whereas running evaluation on the whole validation set takes roughly

6.5s on a Tesla P100. This shows that even though SoTL delivers better results than

validation metrics computed on the whole validation set, computing SoTL is faster

as well.

The results suggest that all the sophisticated one-shot variants are able to improve

on the basic SPOS formulation in terms of ranking correlations despite having differ-

ent motivations. Interestingly, MultiPath randomly samples multiple architectures at

each iteration and averages their training gradients before each update. This actu-

ally turns out to be better than FairNAS, which uses the same setup but with more

complex structured sampling. The meta-learning algorithms Reptile and Metaprox

also significantly improve on SPOS and almost match the performance of specialized

NAS algorithms. Both Reptile and Metaprox do not sample any more architectures

than SPOS but instead focus on more expensive iterations that include second-order

information to aid generalization across tasks (Nichol et al., 2018). This contrasts

45

Spearman correlation Top 10

Dataset Metric SPOS FairNAS MultiPath Reptile Metaprox SPOS FairNAS MultiPath Reptile Metaprox

CIFAR10 SoTL 0.78 (0.06) 0.89 (0.01) 0.91 (0.01) 0.87 (0.01) 0.88 (0.01) 92.87 (0.25) 92.23 (0.15) 92.73 (0.12) 91.97 (0.15) 92.00 (0.17)
TLMini 0.81 (0.04) 0.83 (0.03) 0.86 (0.02) 0.81 (0.03) 0.82 (0.01) 92.13 (0.47) 92.20 (0.27) 92.30 (0.70) 92.40 (0.20) 92.23 (0.31)
ValAcc 0.75 (0.03) 0.76 (0.12) 0.76 (0.06) 0.76 (0.16) 0.64 (0.02) 92.33 (0.74) 92.57 (0.25) 93.03 (0.06) 92.63 (0.31) 92.07 (0.23)
ValAccMini 0.71 (0.05) 0.69 (0.11) 0.66 (0.19) 0.74 (0.21) 0.76 (0.08) 91.83 (0.70) 92.93 (0.06) 91.69 (0.97) 92.37 (0.25) 91.60 (0.87)

CIFAR100 SoTL 0.63 (0.04) 0.87 (0.01) 0.84 (0.01) 0.83 (0.01) 0.84 (0.01) 69.55 (0.10) 68.35 (0.22) 67.88 (0.09) 67.73 (0.18) 67.81 (0.26)
TLMini 0.82 (0.01) 0.83 (0.03) 0.76 (0.01) 0.82 (0.02) 0.84 (0.03) 68.49 (0.36) 68.14 (0.08) 67.98 (0.25) 68.58 (0.43) 68.71 (0.65)
ValAcc 0.78 (0.05) 0.50 (0.26) 0.28 (0.16) 0.58 (0.28) 0.78 (0.06) 68.48 (0.34) 67.37 (1.37) 63.58 (4.91) 66.44 (5.31) 69.25 (1.11)
ValAccMini 0.75 (0.04) 0.24 (0.17) 0.32 (0.15) 0.57 (0.28) 0.71 (0.11) 68.69 (0.77) 64.66 (2.99) 62.19 (4.60) 67.14 (3.72) 68.69 (0.21)

ImageNet SoTL 0.61 (0.01) 0.86 (0.01) 0.84 (0.01) 0.82 (0.00) 0.84 (0.01) 41.67 (0.15) 41.53 (0.15) 41.23 (1.06) 39.85 (0.49) 40.37 (0.06)
TLMini 0.59 (0.06) 0.78 (0.03) 0.79 (0.03) 0.76 (0.03) 0.79 (0.03) 39.97 (1.39) 40.67 (0.98) 40.60 (0.85) 40.15 (1.20) 40.57 (0.50)
ValAcc 0.62 (0.06) 0.60 (0.09) 0.59 (0.09) 0.79 (0.02) 0.73 (0.06) 40.17 (1.01) 41.00 (1.05) 41.07 (1.36) 41.15 (0.21) 41.80 (0.61)
ValAccMini 0.53 (0.09) 0.42 (0.13) 0.41 (0.04) 0.64 (0.12) 0.41 (0.13) 39.40 (0.61) 37.47 (4.10) 35.56 (2.26) 39.75 (1.20) 37.97 (1.09)

Table 4.1: Summary of results on NASBench-201 across various SPOS-like algorithms.
SoTL is usually the best in terms of rank correlation to the ground-truth ranking and
often also on the top-10 performance. The best result across metrics for an algorithm
is in bold. SoTL is reported after 100 minibatches finetuning and the remaining
metrics are using the supernetwork weights directly.

with MultiPath and FairNAS, where the multiple architecture sampling can be un-

derstood as simple variance reduction due to averaging over multiple architectures.

Furthermore, we note that all the one-shot variants have almost the same compute

cost for training the supernetwork when measured in terms of SGD iterations and

compute overall.

4.2.2 NASBench-1shot1 and DARTS search space

We first show the results in the NASBench-1shot1 search spaces as they have the

true test set performances available, and then discuss the performance in the DARTS

search space based on predicted accuracy using NASBench-301. We will abbreviate

the three search spaces in NASBench-1shot1 as NB101-1, NB101-2 and NB101-3,

respectively.

The performance of discretized single-path one-shot algorithms such as SPOS or

ENAS has often been questioned using NASBench-1shot1 as an example because it

was observed that such algorithms have particularly poor results in this benchmark

(Zela et al., 2020; Zhang et al., 2021b). We show that the weak performance is

primarily caused by the standard one-shot protocol consisting of random sampling

followed by a single validation mini-batch evaluation, and using SoTL can make SPOS

match or even exceed DARTS performance.

The full tabular results are available in Table 4.2. We again computed metrics

based on 200 randomly sampled architectures from each search space, which were

sampled ahead of time and kept the same for all the search algorithms. Overall, the

rank correlations on NASBench-1shot1 are lower compared to NASBench-201. For

example, the SoTL Spearman correlations in NB101-3, which is by far the largest

46

NASBench-1shot1 search space, are only around 15% for SPOS. All the specialized

one-shot algorithms only improve the SoTL correlation to around 20%. However,

SoTL still performs well compared to validation metrics which often have single-digit

or negative correlations. The smaller search spaces NB101-1 and NB101-2 have higher

SoTL correlations of around 50% across algorithms, consistently beating validation

accuracy. The top-10 selected architecture performances are strongly improved by

using SoTL as well. While the default evaluation protocol using validation accuracy

often struggles to exceed average 92% test set accuracy and has very high standard

deviations, SoTL consistently results in 93% or above accuracies with up to 10x

lower standard deviations on all search spaces. The overall improvement is significant

enough to make discretized one-shot NAS competitive performance-wise rather than

consistently 1−2% behind DARTS, which achieves around 93.3% on all search spaces.

SPOS with SoTL actually performs better than DARTS in NB101-1, likely because

it is the smallest search space.

The special one-shot variants including the meta-learning algorithms Reptile and

Metaprox have roughly identical performance, and there is no clear winner. We could

not evaluate FairNAS in this space because the architecture encoding in NASBench-

1shot1 specifies operations per-node rather than per-edge as would be required to

execute the FairNAS structured sampling of architectures. Nonetheless, we already

saw in Section 4.2.1 that the performance of FairNAS is in practice quite similar

to sampling multiple architectures randomly as in MultiPath. Overall, the SPOS

variants consistently increase correlations on all three search spaces while also being

strong on the top-10 performance, often outperforming basic SPOS on both.

Next, we show the performance of SoTL in the DARTS search space in Table 4.2,

where the correlations and top-10 performances are estimated using NASBench-301.

The results are qualitatively almost the same as for NASBench-201 and NASBench-

1shot1. For this experiment, we sampled 350 architectures from the DARTS space

because it is very large compared to the other search spaces. We again see a higher

average correlation with lower standard deviation when we rank architectures using

SoTL rather than validation accuracy, which translates into stronger top-10 perfor-

mance. FairNAS performs particularly well with correlations up to 43% in comparison

to the 18% of SoTL in SPOS. The SoTL correlations are roughly twice as high as those

based on validation set metrics, which tend to be slightly below 20%. Combining Mul-

tiPath and Metaprox significantly increases correlations and top-10 performance for

all NASBench-1shot1 search spaces, suggesting that the meta-learning algorithms can

be stacked on top of NAS-specific algorithms to bring additional gains in performance

47

Spearman correlation Top 10

Search space Metric SPOS FairNAS MultiPath Reptile Metaprox
MultiPath

+ Metaprox
SPOS FairNAS MultiPath Reptile Metaprox

MultiPath
+ Metaprox

NB101-1 SoTL 0.43 (0.02) - 0.54 (0.03) 0.51 (0.02) 0.55 (0.01) 0.61 (0.01) 93.44 (0.04) - 93.41 (0.01) 93.48 (0.05) 93.46 (0.03) 93.46 (0.03)
TLMini 0.34 (0.08) - 0.48 (0.03) 0.43 (0.05) 0.50 (0.05) 0.52 (0.07) 92.23 (0.71) - 92.36 (0.69) 91.91 (0.69) 92.88 (0.67) 92.65 (0.28)
ValAcc 0.23 (0.05) - 0.27 (0.19) -0.04 (0.13) 0.01 (0.10) 0.11 (0.31) 90.64 (2.44) - 91.37 (1.97) 91.12 (2.00) 90.78 (1.46) 90.27 (0.84)
ValAccMini 0.35 (0.17) - 0.42 (0.03) 0.37 (0.06) 0.55 (0.03) 0.60 (0.01) 92.10 (0.83) - 92.71 (0.46) 93.11 (0.26) 93.33 (0.18) 93.05 (0.36)

NB101-2 SoTL 0.58 (0.01) - 0.56 (0.01) 0.50 (0.02) 0.55 (0.01) 0.61 (0.01) 93.23 (0.18) - 93.23 (0.06) 92.79 (0.14) 93.17 (0.08) 93.24 (0.03)
TLMini 0.43 (0.05) - 0.51 (0.06) 0.41 (0.03) 0.48 (0.03) 0.57 (0.02) 92.08 (0.87) - 92.33 (0.90) 91.91 (0.37) 92.43 (0.22) 92.85 (0.04)
ValAcc 0.06 (0.19) - 0.43 (0.08) 0.46 (0.07) 0.04 (0.31) 0.38 (0.12) 91.74 (0.20) - 93.06 (0.21) 93.21 (0.03) 90.76 (2.10) 92.15 (1.47)
ValAccMini 0.43 (0.04) - 0.54 (0.05) 0.41 (0.08) 0.47 (0.05) 0.54 (0.03) 92.79 (0.76) - 92.47 (0.68) 92.30 (0.61) 92.88 (0.46) 92.60 (0.05)

NB101-3 SoTL 0.15 (0.02) - 0.20 (0.01) 0.19 (0.01) 0.20 (0.01) 0.27 (0.04) 92.93 (0.14) - 93.16 (0.05) 93.05 (0.26) 92.92 (0.28) 93.20 (0.05)
TLMini 0.17 (0.04) - 0.18 (0.02) 0.15 (0.08) 0.15 (0.02) 0.27 (0.08) 91.14 (0.59) - 91.62 (1.19) 91.71 (0.61) 90.93 (1.28) 92.33 (0.71)
ValAcc 0.02 (0.14) - 0.07 (0.01) 0.03 (0.19) -0.08 (0.02) 0.01 (0.02) 91.05 (1.37) - 91.36 (0.94) 91.23 (1.51) 91.31 (0.57) 91.40 (0.17)
ValAccMini 0.05 (0.04) - 0.15 (0.06) 0.03 (0.06) 0.16 (0.02) 0.19 (0.04) 89.76 (0.85) - 90.72 (0.39) 91.62 (0.32) 92.20 (0.01) 92.86 (0.10)

DARTS SoTL 0.18 (0.01) 0.43 (0.02) 0.38 (0.02) 0.32 (0.02) 0.37 (0.01) - 93.41 (0.09) 93.65 (0.07) 93.67 (0.10) 93.51 (0.11) 93.57 (0.02) -
TLMini 0.02 (0.07) 0.23 (0.01) 0.23 (0.06) 0.20 (0.07) 0.26 (0.04) - 93.04 (0.33) 93.30 (0.00) 93.28 (0.04) 93.41 (0.11) 93.29 (0.15) -
ValAcc 0.17 (0.03) 0.19 (0.05) 0.19 (0.02) 0.16 (0.03) 0.08 (0.05) - 93.45 (0.13) 93.50 (0.14) 93.54 (0.08) 93.56 (0.06) 93.50 (0.10) -
ValAccMini 0.15 (0.07) 0.21 (0.13) 0.12 (0.05) 0.12 (0.14) 0.06 (0.04) - 93.25 (0.15) 93.35 (0.21) 93.42 (0.03) 93.44 (0.15) 93.46 (0.04) -

Table 4.2: Summary of results on NASBench-1shot1 and DARTS search spaces across
various SPOS-like algorithms. SoTL consistently achieves the best correlation and
top-10 performance out of all the benchmarked metrics. The best result across metrics
for an algorithm is in bold. NB101-1/2/3 abbreviate NASBench-1shot1 search spaces
1, 2 and 3. We did not evaluate FairNAS for NASBench-1shot1 because its formula-
tion is incompatible with those search spaces, and we could not evaluate MultiPath
+ Metaprox for DARTS due to compute reasons.

at the cost of extra compute. We also extract the top-1 architectures from three Fair-

NAS supernetworks and retrain them using the original DARTS 600 epochs training

protocol. This is shown in Table 4.3. The best architecture selected by ValAcc only

achieved 2.81% test accuracy. Meanwhile, the best one selected by SoTL had a 2.73%

test accuracy, which is better than the 2.76% of DARTS itself (Liu et al., 2018).

In summary, we have shown that the additional training to collect SoTL signif-

icantly improves results across the whole NASBench series even though the cost of

extra training is typically lower than evaluating on the whole validation set. Fur-

thermore, SoTL is essentially hyperparameter-free and can be applied to all one-shot

algorithms that require choosing architectures from a candidate pool as the final step

of the search. It appears that finetuning for as little as 50 minibatches might be

sufficient to reap most of the benefits, and the performance of SoTL remains stable

until at least one epoch worth of training, making it easy to find a suitable time to

stop the finetuning. SoTL can easily be used for non-random architecture sampling

as well. For instance, when using Regularized Evolution for the final architecture

selection (Guo et al., 2020), it suffices to replace ranking via validation accuracy to

ranking via SoTL for guiding the evolution. We leave such extensions for future work.

In Section 4.3, we show that we can optimize SoTL directly as a part of the training

procedure in gradient-based NAS algorithms to guide the search better than when

optimizing validation loss.

48

Test acc.

Average Best

FairNAS (SoTL) 2.88 (0.19) 2.73
FairNAS (ValAcc) 3.02 (0.19) 2.81

Table 4.3: The test accuracy of architectures extracted from FairNAS supernetworks
in the DARTS search space using either SoTL or validation accuracy on the whole
validation set. The evaluation was done using the standard DARTS 600 epochs
protocol. Using SoTL leads to better average and top-1 architecture selections across
three random seeds.

4.2.3 The effect of learning rates

Our one-shot experiments generally reuse the default parameters from the correspond-

ing NASBench setup (Dong et al., 2020; Ying et al., 2019; Li et al., 2020). For the

finetuning phase, we set parameters similar to those in the search phase as a nat-

ural default. This avoids excessive overfitting to the benchmark because with the

ground-truth test set performances being available, it would be possible to tune hy-

perparameters to maximize the resulting rank correlations. However, doing so would

have been impossible outside of tabular benchmark settings. Nonetheless, we show

that there appear to be several guidelines for setting the hyperparameters that follow

a certain intuition and can be used to explain some of the interesting phenomena we

observed when discussing the one-shot results on the NASBench series.

We study the effect of different batch sizes and learning rates on the finetuning

phase, always using the same pre-trained supernetworks. We finetune each architec-

ture for one epoch or 300 minibatches, whichever is sooner. This means that larger

batch sizes do a lower amount of training iterations than smaller batch sizes. First,

we discuss the possible prior motivations for the choice of finetuning learning rate. In

regular standalone training of deep learning architectures, it has generally been ob-

served that it is necessary to use large learning rates at least at the start of training in

order for the final generalization performance to be good after decaying the learning

rate to near zero. Likewise, higher batch sizes seem to require larger learning rates to

work well (Lewkowycz et al., 2020; Li et al., 2019; Keskar et al., 2017; Smith et al.,

2018). By using low learning rates, we thus risk not realizing an architecture’s true

generalization potential. On the other hand, large learning rates generally only lead

to strong performance at the end of training rather than in the early phases since the

larger step sizes seem to function by encouraging exploration.

49

Similarly, there is no obvious choice of learning rate when finetuning architectures

that inherit weights from the supernetwork. With low learning rates, we risk never

significantly modifying the supernetwork initialization, but high learning rates might

lead to catastrophic forgetting. Moreover, because we finetune for one epoch or less,

it is not obvious whether the advantages of high learning rates even have time to

materialize. We might also expect higher batch size to work better than lower batch

sizes because it provides more precise estimates of the training gradients, which should

be advantageous over a short training period.

We study the problem by doing a small grid search with SPOS checkpoint initial-

ization on NASBench-201 CIFAR10. We pick the batch size from {64, 128, 256} and

the learning rate from {0.001, 0.01}, computing a Cartesian product of the parameters

where each setting is evaluated over three supernetwork seeds while the evaluated set

of 200 randomly sampled architectures is held constant as usual. Figure 4.7 shows the

resulting correlation and top-10 performance curves. We hold the batch size constant

at 64 while varying the learning rate, and the learning rate at 0.01 while varying the

batch size. Both smaller learning rate and higher batch size are generally understood

to increase the stability of training. In our case, this appears to increase the rank cor-

relations, but it simultaneously impedes the top-10 ranking. Having a high learning

rate with low batch size achieves the best performance when the objective is to select

the top architectures. This further adds to the evidence that being able to rank both

the median and top-k architectures is difficult, and improvements in ranking median

architectures do not necessarily transfer to ranking top architectures as observed by

Zhang et al. (2021b).

Next, we study the positive correlation between learning rate and top-10 per-

formance in more detail. Specifically, Figure 4.8 shows the top-10 curve and the

average training loss across all architectures when training on ImageNet16-120 in the

NASBench-201 search space. We see that using 0.01 learning rate achieves over 2%

higher top-10 performance than using 0.001 learning rate. Moreover, the average

training loss with 0.01 learning rate actually increases over the finetuning. This is a

symptom of the learning rate being too high, and the average loss decreases properly

when using only 0.001 learning rate. We also investigate the training loss for two

architecture subgroups - the top 10% and median architectures as ranked by the true

test set performances within our pre-sampled 200 architectures subset. When fine-

tuning with 0.001 learning rate, the average training losses per group are extremely

close to the point of being indistinguishable. Meanwhile, when using 0.01 learning

50

Figure 4.7: Grid-search of batch size and learning rate on NASBench-201 CIFAR10
for the finetuning of SPOS checkpoints. We show that while both lower learning
rates and higher batch sizes improve overall correlations, they actually decrease the
performance of top-10 ranked architectures.

rate, the gap between top 10% and median architectures widens during the train-

ing. This makes it easier to select the best architectures and results in higher top

10 performance of the selected architectures. We found this effect to occur on all

NASBench-201 supported datasets, but it is the strongest on ImageNet16-120.

Table 4.4 shows the results of finetuning SPOS checkpoints with both low and

high learning rates on all our benchmark datasets. Higher learning rate improves the

top-10 performance across all datasets for SoTL, often despite lower correlations. The

improvement in the top-10 is particularly significant on NASBench-201 and NB101-3.

For both the DARTS search space and NASBench-201, there is a marked decrease

in rank correlations after increasing the learning rate, but the same or higher top-10

performance than in the low learning rate case.

Moreover, Table 4.4 also reports the results for the whole validation set accuracy

(ValAcc). However, it is now computed after 100 minibatches finetuning (same as

SoTL) rather than using the supernetwork weights directly as before. The finetuning

significantly improves the ValAcc correlations and top-10 performance on NASBench-

1shot1. However, the performance on NASBench-201 stays the same or decreases.

In the DARTS search space, ValAcc strongly improves when finetuning with 0.001

learning rate, and gets much worse with 0.01 learning rate to the point that the

51

Figure 4.8: Training statistics from finetuning SPOS checkpoints on NASBench-201
ImageNet16-120. Using high learning rates gives better top 10 performance of selected
architectures (top) even though the average loss goes up over finetuning (middle). We
explain this by showing that high learning rates cause the best architectures to go up
in loss the least (bottom).

correlation becomes zero.

It appears that ValAcc performs better when finetuned with a lower learning

rate overall. This outcome is similar to the training-from-scratch experiments on

NASBench-201 shown in Figure 4.4, where we saw that validation accuracy improves

as an estimator of generalization when either the learning rate has been sufficiently

annealed after long training in the 200-epochs case or when the learning rate simply

became low quickly in the 12-epochs case. As a potential explanation for this effect,

we conjecture that validation accuracy performance is improved with low learning

rates because they encourage overfitting to the training data in a way that is not pos-

sible with high learning rates, which limits the performance of SoTL. The validation

accuracy then accurately shows which architectures have overfitted the least, which

is synonymous with generalization. However, more closely studying the interaction

between learning rate regimes and training/validation data splits remains an exciting

avenue for future work.

To conclude, we describe several limitations of our work in this Section. For

52

Spearman correlation Top 10

Search space Metric SPOS (0.01) SPOS (0.001) SPOS (0.01) SPOS (0.001)

NB201 (CIFAR10) SoTL 0.78 (0.06) 0.84 (0.06) 92.87 (0.25) 92.23 (0.21)
ValAcc 0.70 (0.11) 0.81 (0.06) 91.53 (2.10) 92.30 (0.20)

NB101-1 SoTL 0.43 (0.02) 0.41 (0.03) 93.44 (0.04) 93.32 (0.12)
ValAcc 0.43 (0.02) 0.44 (0.01) 93.16 (0.11) 93.12 (0.04)

NB101-2 SoTL 0.58 (0.01) 0.55 (0.01) 93.23 (0.18) 93.00 (0.19)
ValAcc 0.57 (0.02) 0.56 (0.01) 92.94 (0.06) 92.94 (0.32)

NB101-3 SoTL 0.15 (0.02) 0.16 (0.03) 92.93 (0.14) 90.69 (0.41)
ValAcc 0.13 (0.01) 0.17 (0.06) 92.84 (0.21) 93.08 (0.07)

DARTS SoTL 0.18 (0.01) 0.26 (0.03) 93.41 (0.09) 93.40 (0.06)
ValAcc -0.02 (0.09) 0.29 (0.04) 93.31 (0.19) 93.48 (0.17)

Table 4.4: A comparison of high and low learning rates for the finetuning phase
across the whole NASBench series. High learning rate increases top-10 performance
but simultaneously decreases the overall rank correlations. The parentheses after
SPOS indicate the learning rate used. Note that 0.01 learning rate is the same as we
used in our other experiments with SPOS.

compute reasons, we were not able to explicitly search for hyperparameters that

would make something the phenomenon on NB101-1 and NB101-2, for which the

results of finetuning with both 0.01 and 0.001 learning rates are almost the same.

Likewise, we could not run similar experiments for SPOS variants such as FairNAS,

although we found in isolated cases that using 0.01 learning rate is generally too high

for them and leads to catastrophic forgetting that harms performance overall. We did

find all the benchmarks to share the property that actually decreasing the training

loss over finetuning is not necessary for SoTL to work. Even when the training loss

increases over time, it increases the least for the best architectures, even if only by a

slight margin, and this in turn still allows SoTL to outperform validation set metrics.

In fact, using 0.01 rather than 0.001 learning rate universally leads to higher average

training loss on all benchmarks similar to the observations in Figure 4.8.

4.2.4 Investigating the bias of high learning rates

Based on the previous observations about learning rates in Section 4.2.3, we propose

an intuitive explanation. First, architectures that generalize better also tend to have

smoother loss landscapes. In practice, this makes them easier to optimize, and in

particular, it makes it possible to use higher learning rates to train them using SGD.

This means that the high-performing architectures train quickly compared to weaker

53

architectures, leading to the idea of training speed determining generalization that

underlies SoTL. Weakly performing architectures have significantly less smooth loss

landscapes, making the training fail for high learning rates or be very slow. The

seeming paradox of high learning rate SPOS having low rank correlations but high

top-10 performance can then be explained by the best architectures being able to train

significantly better with 0.01 learning rate than the weaker architectures. Excessively

high learning rates cause the weak architectures to suffer catastrophic forgetting,

which makes their performance more random-like. This in turn means that the weaker

architectures can no longer be properly distinguished, which hurts the overall rank

correlations. It also effectively prunes the weaker architectures out of consideration for

top-10, which makes the true top-10 easier to select. Meanwhile, all the architectures

train at approximately the same rate with 0.001 learning rate, and it becomes difficult

to distinguish the best ones. However, the correlations are improved because no

architectures devolve into random-like behavior.

Smoothness of loss landscapes has previously been explored in the context of

DARTS by Shu et al. (2020), who argue that DARTS prefers shallow architectures

because they have smoother loss landscapes and are easier to optimize while still

having good generalization performance. Furthermore, flat minima are commonly

identified with good generalization properties (Keskar et al., 2017). Other recent

work (Fort et al., 2020; Smith et al., 2020) connects gradient variance over training

data to generalization, and gradient variance during training can also be understood in

terms of the smoothness of the training loss landscape. Flat loss landscapes have low

gradient variance, whereas sharp loss landscapes lead to frequent zigzag patterns when

training with SGD, which results in high gradient variance. Based on this insight, we

design the last experiment of this Section to act as a preliminary investigation of the

bias behind high learning rates.

In order to test whether well-performing architectures in our benchmarks also

tend to have smoother loss landscapes, we design two more metrics. First, Sum-of-

Gradients (SoG) accumulates the gradients over the training trajectory dimension-

wise, and then all the dimensions are summed up into a scalar at prediction time.

When training with SGD, the gradient accumulation also corresponds to the distance

from initialization. Second, we also track the Sum-of-Gradient-Norm (SoGN), which

is the accumulated L1 norm of gradients over the training trajectory. In contrast to

SoG, SoGN is computed by taking the norm at each training iteration and keeping a

running scalar sum of the norms. In order to have high SoGN, it is sufficient to zigzag

in sharp regions of the loss landscape without making any real progress. To have high

54

SoG, it is necessary for the training to have gradients that are consistently biased in

a certain direction (i.e. the final optimum) since the summation is now sensitive

to signs of the gradients, and it is also necessary to have high magnitude gradients

at the same time. Gradients with high norms that have a consistent direction then

naturally lead to fast training, resulting in high SoG and low SoTL. Hence if it was

true that better generalizing architectures have smoother loss landscapes than their

weaker counterparts, it should be the case that they have low SoTL and high SoG.

Figure 4.9 shows the resulting Spearman correlation curves during training on

NASBench-201 CIFAR10 for both finetuning from SPOS checkpoints and for train-

ing the same architecture subset from scratch over 20 epochs. In both cases, SoG

achieves a significantly better correlation than SoGN. For example, SoG has up to

85% correlation in the training from scratch case compared to 68% of SoGN. We

also report the correlation between parameter count and the ground truth test set

performance (denoted as Params). Even the parameter count achieves correlations

of around 80% despite it being a very simple baseline. The parameter count is an

important metric in this case because both SoG and SoGN are a proxy to the number

of parameters since more parameters naturally lead to higher gradient norms. How-

ever, we see that SoGN tends to have poorer performance than SoG, which suggests

that correlation with parameter count is insufficient to explain the difference between

those two metrics. Instead, we attribute this to the weaker architectures having zigzag

training trajectories, which induces high SoGN but low SoG.

We evaluate SoG and SoGN on all our benchmarks in Table 4.5 using both 0.01 and

0.001 learning rates. Apart from rank correlations with the true test set performance,

we also show rank correlations between the proposed rankings and parameter count

for SoTL and SoG (denoted as SoTL-P and SoG-P, respectively). In terms of the

ground truth correlation, SoG generally outperforms SoTL, especially on NASBench-

1shot1 and the DARTS search space. The parameter count maintains a correlation of

roughly 80%, which is enough to make it a top predictor across most search spaces.

We further see that SoG can be up to 85% correlated with the parameter count,

which is higher than its correlation with the ground truth performance. However,

even SoTL can better correlate with the parameter count than the ground truth,

particularly on NASBench-1shot1.

We also note that the rank correlations of SoG are lower with 0.001 learning rate,

and the same happens but is even more severe for SoGN. If the intrinsic correlation

between parameter count and gradient norm was the only source of high performance

for SoG and SoGN, there should be no major change when going from 0.01 to 0.001

55

(a) NB201 - Supernetwork initialization (b) NB201 - Training from scratch

Figure 4.9: a) Spearman correlations of SoTL and SoG/SoGN during finetuning of
SPOS checkpoints on NASBench-201 CIFAR10 with 0.001 learning rate. SoG attains
significantly better correlations than SoGN. We note that the difference between them
is smaller with high learning rates as shown in Table 4.5. b) Similar as before, except
that the architectures are now trained from scratch rather than with supernetwork
initialization. The standalone training uses NASBench-201 defaults for training-from-
scratch, including 0.1 learning rate.

learning rate. Instead, if we appeal to the intuition outlined at the beginning of this

Section, a possible explanation might be that all architectures tend to zigzag around

sharp regions for a low enough learning rate. Having higher learning rates instead

makes the good architectures stay in flat regions, where the weights solution moves

quickly towards the optimum with SGD, while poor architectures are still stuck in

sharp regions.

Our results here are similar to those of Zhang et al. (2021b), who also show that

SPOS-like algorithms are usually better correlated with parameter count than the

ground truth. The excessive predictiveness of simple parameter count can be seen as

a weakness of all the most common vision search spaces for NAS. Zhang et al. (2021b)

also show that for DARTS-PTB, which is a natural language processing benchmark

from the original DARTS paper (Liu et al., 2018), there is a negative correlation

between parameter count and performance, and also a negative correlation between

the supernetwork validation accuracy and ground truth performance. We were not

able to evaluate SoG on DARTS-PTB because it would require excessive compute for

training all examined architectures to convergence.

Nonetheless, it appears that the success of one-shot NAS might be at least par-

tially driven by the correlation between parameter count and ground truth test set

performance on mainstream NAS benchmarks. While it is not a surprise that such

a correlation would increase the performance of SoG, the fact that even SoTL can

56

Spearman correlation

Search space SoG (0.01) SoG (0.001) SoGN (0.01) SoGN (0.001) Params SoTL-P SoG-P

NB201 (CIFAR10) 0.86 (0.01) 0.78 (0.01) 0.81 (0.04) 0.54 (0.02) 0.79 (0.00) 0.56 (0.07) 0.78 (0.03)
NB201 (CIFAR100) 0.84 (0.01) 0.78 (0.01) 0.82 (0.01) 0.53 (0.03) 0.77 (0.00) 0.55 (0.03) 0.80 (0.01)
NB201 (ImageNet) 0.72 (0.00) 0.58 (0.00) 0.71 (0.00) 0.42 (0.01) 0.74 (0.00) 0.53 (0.08) 0.70 (0.06)

NB101-1 0.67 (0.00) 0.61 (0.01) 0.12 (0.01) -0.05 (0.03) 0.79 (0.00) 0.58 (0.02) 0.84 (0.01)
NB101-2 0.62 (0.01) 0.47 (0.02) 0.14 (0.03) -0.13 (0.02) 0.81 (0.00) 0.79 (0.01) 0.73 (0.01)
NB101-3 0.43 (0.01) 0.40 (0.01) 0.32 (0.01) 0.08 (0.01) 0.78 (0.00) 0.27 (0.02) 0.68 (0.01)

DARTS 0.45 (0.01) 0.38 (0.01) 0.50 (0.01) 0.38 (0.02) 0.47 (0.00) 0.27 (0.03) 0.71 (0.05)

Table 4.5: Spearman correlations for SoG and SoGN across all our benchmark
datasets. While the performance of SoG is generally very high, it is usually bet-
ter correlated to the parameter count than the ground truth. However, the same can
be true for SoTL. The ”-P” suffix signifies that the rank correlation is with respect
to the parameter count rather than the test set accuracy. Parentheses after metric
indicate the learning rate used to obtain it.

be significantly better correlated with parameter count rather than the ground truth

test set accuracy is concerning. However, we note that it is impossible to have both

a good correlation with test set accuracy and a bad correlation with parameter count

because the correlation between parameter count and test set accuracy is so strong

in the first place.

Ultimately, it is not clear whether SoG outperforms SoTL simply due to bet-

ter exploiting the bias towards high parameter count architectures also having high

generalization performance. The experiments we have presented here are quite pre-

liminary and have mixed results at times. While the intuitive reasoning behind SoG

is appealing, more work is needed to verify its practical usefulness and its relationship

to the interesting phenomena we observed when finetuning one-shot supernetworks.

We leave such extensions for future work.

57

4.3 Differentiable NAS

In this section, we first discuss the performance of SoTL-DARTS in comparison to

other weight-sharing NAS algorithms on NASBench-201 and NASBench-1shot1 in

Section 4.3.1. Next, we do the same in the DARTS search space using both the model-

based predictors from NASBench-301 as well as training discovered architectures from

scratch using the original DARTS evaluation protocol in Section 4.3.2. Finally, we

apply a suite of DARTS diagnostics previously described in the differentiable NAS

literature to identify the source of performance improvement in SoTL-DARTS in

Sections 4.3.3, 4.3.4 and 4.3.5.

We run all our experiments with three random seeds to account for the search

instability in DARTS. We always use 100 minibatches for computing the approximate

SoTL gradients. Experiments on CIFAR10 generally use only 50% of the CIFAR10

training data for SoTL-DARTS, which amounts to using only the training set of the

train-validation 50-50 split in original DARTS. This makes it possible to show that the

SoTL performance improvement is not caused by increasing the volume of training

data that would be caused by merging train-validation into a single training set.

Appendix B summarizes all the relevant hyperparameter defaults that are adopted

from the relevant NASBench.

4.3.1 NASBench-201 and NASBench-1shot1

NASBench-201 is a notorious example of DARTS architecture overfitting since both

first and second-order DARTS tend to select an architecture with all skip connections.

This leads to DARTS catastrophically underperforming both other weight-sharing

algorithms and query-based NAS algorithms, such as random search (Bergstra et al.,

2012) or Regularized Evolution (Real et al., 2019). We summarize the NASBench-201

results in Table 4.6. When training SoTL-DARTS, we use the train portion of the

NASBench-201 data splits, which results in using only 50% of the training data for

CIFAR10 due to the 50-50 train-validation split, and 100% for both CIFAR100 and

ImageNet16-120 since the original splits use a small portion of the true test set as

validation sets. All training hyperparameters are kept at the default values of their

respective NASBench implementations.

In comparison to the baseline DARTS which achieves only 59.84% CIFAR10 test

accuracy on NASBench-201, SoTL-DARTS is able to prevent the skip connection

collapse, and its selected architectures reach 92.66% average test accuracy. While

this is still not enough to outperform other baselines such as Regularized Evolution

58

(Real et al., 2019), which are especially performant because the total number of

architectures in NASBench-201 is small, SoTL-DARTS is highly competitive with

other weight-sharing algorithms such as GDAS (Dong et al., 2019b) or SPOS (Li et

al., 2020). The performance improvements of SoTL-DARTS also extend to CIFAR100

and ImageNet16-120, on which the accuracies changed from 60.49% and 36.79% to

68.13% and 36.6%, respectively.

We also show several ablations to ascertain the strong performance of our method.

First, we report the results of searching via SoTL-DARTS for 150 epochs instead of

the default 50 epochs. The performance does not degrade even with more training

epochs unlike baseline DARTS, for which longer training is known to exacerbate the

skip connection overfitting problem (Zela et al., 2019). While the 50 epochs training

default in DARTS is necessary to act as early stopping to prevent excessive architec-

ture overfitting, SoTL-DARTS is less sensitive to the number of training epochs. We

also test SoVL-DARTS which is similar to first-order DARTS, except that the archi-

tecture gradients are accumulated over 100 validation minibatches before each update.

SoVL-DARTS has even worse performance than normal DARTS, which shows that

the performance gains in SoTL-DARTS come from computing gradients with respect

to the training data rather than the summation over longer periods. The performance

of SoTL-DrNAS is slightly better than that of the baseline DrNAS (Chen et al., 2021)

as well. Figure 4.10c shows the search trajectory of DARTS and SoTL-DARTS during

CIFAR10 search. It is clear that while DARTS rapidly overfits to all skip connections,

SoTL-DARTS keeps improving with more training time.

For NASBench-1shot1, we observe that SoTL-DARTS performs poorly on all three

search spaces. We were able to fix this by significantly altering the hyperparameters,

decreasing the SoTL summation period to 10 from 100 and decreasing the batch size

to 32 from 64. Remarkably, the weak performance is not due to a bad choice of

operations; in fact, both SoTL-DARTS and normal DARTS choose 3 × 3 conv for

almost every operation. Instead, we identify that the problem is in the topology of

the cell since SoTL-DARTS chooses deep cells while DARTS chooses shallow cells.

This issue is discussed in great detail in Section 4.3.4. We suspect that changing the

hyperparameters as we did destabilizes the search, which in turn implicitly regularizes

the depth of discovered architectures because deeper architectures are more unstable

to train. Having the SoTL summation period set to 100 over-stabilizes the training,

allowing the deep architectures to dominate the search. However, we could not assess

whether this hypothesis holds in greater generality over other search spaces due to

compute reasons. Nonetheless, it highlights the fact that adopting the DARTS default

59

CIFAR10 CIFAR100 ImageNet16-120

REA (Real et al., 2019) 94.02 (0.31) 72.23 (0.95) 45.77 (0.80)
Random Search (Bergstra et al., 2012) 93.90 (0.26) 71.86 (0.89) 45.28 (0.97)
SPOS (Li et al., 2020) 91.05 (0.66) 68.26 (0.96) 40.69 (0.36)
GDAS (Dong et al., 2019b) 93.23 (0.58) 68.17 (2.50) 39.40 (0.00)
ENAS (Pham et al., 2018) 93.76 (0.00) 70.67 (0.62) 41.44 (0.00)
DrNAS (Chen et al., 2021) 93.76 (0.00) 68.82 (2.06) 41.44 (0.00)
DARTS (first-order) (Liu et al., 2018) 59.84 (7.84) 61.26 (4.43) 37.88 (2.91)
DARTS (second-order) (Liu et al., 2018) 65.38 (7.84) 60.49 (4.95) 36.79 (7.59)

SoTL-DARTS 92.66 (0.00) 68.13 (2.18) 36.60 (0.00)
SoTL-DARTS (150 epochs) 89.89 (2.52) 71.03 (0.66) 33.75 (0.00)
SoVL-DARTS 54.30 (0.00) 15.61 (0.00) 17.37 (1.48)
SoTL-DrNAS 93.76 (0.00) 71.11 (0.00) 41.44 (0.00)

Table 4.6: Baseline DARTS overfits to all skip connections on NASBench-201, which
leads to very poor performance. SoTL-DARTS prevents this and achieves 92.66%
test set accuracy. Most baselines were reprinted from Dong et al. (2021) except the
DrNAS results, which are our own. Notably, we were unable to reproduce the original
results from Chen et al. (2021) with near-perfect performance using the public code.

NB101-1 NB101-2 NB101-3

DARTS 93.33 (0.01) 93.37 (0.00) 93.35 (0.01)
SoTL-DARTS 91.86 (0.68) 90.15 (0.00) 87.87 (0.00)
SoTL-DARTS (diff. hparams) 93.28 (0.00) 93.33 (0.00) 92.87 (0.53)

Table 4.7: On NASBench-1shot1, the performance of SoTL-DARTS is quite weak
overall and significantly trails baseline DARTS on all the three search spaces. NB101-
1, NB101-2 and NB101-3 abbreviate the NASBench-1shot1 search spaces 1, 2 and 3,
respectively.

parameters might be quite suboptimal, especially since we show in later Sections that

the inherent biases of SoTL-DARTS are fundamentally different from normal DARTS.

For NASBench-1shot1, we also tried several other SoTL-DARTS variants including

computing exact rather than approximate SoTL gradients over 7 time steps, which is

feasible in this case because the NASBench-1shot1 supernetwork is small. However,

none were able to fix the low performance without altering other hyperparameters.

It also did not make a difference whether we used 50% or 100% of CIFAR10 training

data for the search.

60

4.3.2 DARTS search space

In this section, we run the search using SoTL-DARTS on the original DARTS space

and several of its variants. We show the search trajectories predicted by NASBench-

301, and also run the full DARTS evaluation protocol for the most promising al-

gorithms. Most prior work reuses the DARTS evaluation protocol, which involves

running the search four times, retraining all architectures from scratch, picking the

best out of the four and retraining it ten times from scratch using 600 epochs training;

the average of those ten runs is then reported as the mean performance of the best

architecture. We instead report the average and best performance of the search ran

three times and evaluating each of the found architectures only once due to compute

constraints. We were unable to evaluate the searched architectures more thoroughly

because the 600 epochs training takes around 2 days on a GTX 1080Ti for a single

seed.

First, we show the NASBench-301 predicted performances of SoTL-DARTS and

SoTL-DrNAS in Figure 4.10. The SoTL versions of the algorithms maintain stronger

anytime and final performances throughout the whole search compared to the base-

lines. Simultaneously, the compute cost of SoTL-DARTS is only as high as first-order

DARTS because there is no need to compute second-order gradients. The performance

of SoTL variants is the highest at the end of the search whereas normal DARTS over-

fits towards the end of the search, which suggests that SoTL-DARTS is more robust to

the length of training. This mirrors the observed robustness to the number of epochs

in the NASBench-201 results from Section 4.3.1, in which we showed it was possible

to train for 150 epochs without overfitting in the search. Moreover, we again ran the

SoTL-DARTS search using only 50% of CIFAR10. Hence SoTL-DARTS outperforms

DARTS while using only half the data in total.

Table 4.8 shows the full performance results including several other evaluation

protocols. First, we tabulate the prediction from NASBench-301 and also retrain

using the original DARTS evaluation protocol with 600 epochs training (denoted as

20 layers eval). The best architecture found by SoTL-DARTS has 2.73% error rate,

which is slightly better than the baseline DARTS at 2.76%, but significantly worse

than the other baselines such as PDARTS (Chen et al., 2019) or PC-DARTS (Xu

et al., 2019). The remainder of this Section will be spent on diagnosing the problems

that prevent achieving better performance.

In particular, we will now argue that the problem is not necessarily that the search

works poorly, but rather that the optimum during the search does not transfer well to

the full evaluation architecture due to an issue known as the depth gap (Chen et al.,

61

2019; Chen et al., 2021). The network used for DARTS search only uses 8 layers

of the searched cell because of memory requirements, and the evaluation network

depth is increased to 20 layers after architecture selection since the end goal is to

find an architectural cell that would work for very large networks. SoTL-DARTS

finds a better architecture than DARTS in the 8 layers regime, which we verify by

retraining the architectures from scratch using only 8 layers (denoted as 8 layers eval).

All the SoTL variants have significantly better performance than the baselines when

measured with 8 layers evaluation. This is particularly relevant for SoTL-DrNAS,

which reports a poor performance of only 2.90% in the original 20 layers eval, but it

is the best in 8 layers eval.

Moreover, we also run SoTL-DARTS using 20 layers during the search itself, which

we refer to as SoTL-DARTS-20. This is particularly tractable for SoTL-DARTS

because no second-order gradients are needed unlike in normal DARTS. As a result,

the total compute time is roughly equivalent to second-order DARTS (≈ 1 day)

when using the default 64 batch size, which induces a memory requirement of only

23GB VRAM using our implementation. For SoTL-DARTS-20, we also used 100%

of the CIFAR10 training set to compare it more fairly against other state-of-the-art

algorithms. Table 4.8 shows that the search results are improved, and the average

search performance of SoTL-DARTS-20 exceeds the best architecture from DARTS.

However, even the top-1 performance of SoTL-DARTS-20 at 2.68% is not competitive

with the state-of-the-art performances of algorithms such as DrNAS (Chen et al.,

2021) or iDARTS (Zhang et al., 2021a), which can achieve CIFAR10 test set accuracy

of less than 2.5%. We also tested first-order DARTS with 20 layers in the search

(denoted as DARTS-20) and found it to improve the performance to 2.89% from the

original 3.00%.

That said, we also struggled to reproduce the published performance of state-of-

the-art algorithms, which we account to not having run enough search seeds. Because

NAS literature usually only reports the top-1 discovered architecture performance,

rerunning the search multiple times is trivially expected to yield better results. In

fact, some related work such as GAEA (Li et al., 2021) mention they ran the search

15 times, whereas ours was only run three times. Not only we found it difficult to

reproduce the search results of other algorithms, even retraining the best published

architectures did not yield the same performance as reported in the papers. We

suspect that changes in library versions slightly perturb the final performance. Be-

cause the gap between baselines such as DARTS and state-of-the-art algorithms on

CIFAR10 is only about 0.25% extra accuracy, even a small performance regression is

62

NB301 8 layers eval 20 layers eval

Average Average Average Best

DARTS (1st) (Liu et al., 2018) 93.89 (0.17) 95.13 (0.18) - 3.00
DARTS (2nd) (Liu et al., 2018) 93.79 (0.57) 95.09 (0.22) - 2.76
DrNAS (Chen et al., 2021) 93.75 (0.58) 95.53 (0.28) - 2.46
PC-DARTS (Xu et al., 2019) - - - 2.57
PDARTS (Chen et al., 2019) - - - 2.50
iDARTS (Zhang et al., 2021a) - - - 2.37

SoTL-DARTS 94.11 (0.24) 95.36 (0.22) 2.82 (0.12) 2.73
SoTL-DrNAS 94.50 (0.13) 95.65 (0.19) 3.00 (0.14) 2.90
SoTL-PDARTS 93.51 (0.15) 95.39 (0.22) 3.27 (0.12) 3.19
SoTL-DARTS-20 94.21 (0.18) 95.53 (0.18) 2.72 (0.04) 2.68
DARTS-20 (first-order) 93.31 (0.31) 94.94 (0.39) 2.97 (0.11) 2.89

Table 4.8: Summary of performances of SoTL variants against baselines in the
DARTS search space. SoTL-DARTS can match baseline DARTS and SoTL-DARTS-
20 achieves better average performance that DARTS’s best. ”-” means that the
original papers did not provide those results and we did not have the resources to re-
run all the baselines. DARTS (1st) and (2nd) refer to first and second-order DARTS,
respectively.

enough to invalidate the results. Moreover, the reproducibility of NAS research has

previously been a subject of criticism (Li et al., 2020).

4.3.3 Qualitative analysis of the discovered architectures

Our experiments with altering the number of layers in the search supernetwork yielded

additional interesting insights on the depth gap in DARTS. First, we found that the

architectures discovered by SoTL-DARTS are very distinct from baseline DARTS

even in the 8 layers case. Instead of overfitting to skip connections, the architectures

become very heavy on separable convolutions and often contain no parameter-free

operations whatsoever. The only parameter-free operation that tends to get selected

out of the present skip connection, max pool and avg pool tends to be max pool, but it

is not rare for the final architecture to have no parameter-free operations whatsoever.

In order to investigate the different operation bias between DARTS and SoTL-

DARTS further, we first evaluated the search space S2 from Zela et al. (2019). S2

is a subset of the original DARTS search space containing only {skip connection, 3×
3 separable convolution}. We compare the number of skip connections alongside the

predicted NASBench-301 performance in Figure 4.15. Normal DARTS selects up to

63

(a) DARTS NB301 perf. (b) DrNAS NB301 perf. (c) DARTS NB201 perf.

Figure 4.10: a) and b) compare the SoTL versions of DARTS and DrNAS against
the baselines with search trajectories provided by NASBench-301. The SoTL variants
typically maintain higher performance throughout the whole search.

12 out of 16 operations as skip connections, which is excessive and leads to poor

performance. Meanwhile, SoTL-DARTS selects zero skip connections during most of

the search, which means its predicted accuracy does not degrade towards the end of

the search as in normal DARTS.

To prevent ambiguity, we will also refer to normal SoTL-DARTS with 8 layers dur-

ing the search as SoTL-DARTS-8. We argue that the relatively weak performance of

SoTL-DARTS-8 architectures in the 20 layer evaluation is caused by architectural bi-

ases that work better with only 8 layers of depth rather than 20 layers. We conjecture

that SoTL-DARTS-8 does not pick skip connections because they are not required

with only 8 layers, but SoTL-DARTS-20 starts selecting them as they are more useful

in deeper architectures (He et al., 2016; Vaswani et al., 2017). Figure 4.12 shows that

this happens in practice in the search on S2 using SoTL-DARTS-20 and DARTS-20.

The overfitting to skip connections in DARTS-20 gets even worse, and up to 15 out

of 16 selected operations tend to be skip connections. Importantly, SoTL-DARTS-20

now also starts picking skip connections throughout the whole search including at the

end. Meanwhile, SoTL-DARTS-8 picked zero skip connections at all times on S2.

Figure 4.12 also shows that SoTL-DARTS-20 picks skip connections and other

parameter-free operations both during and at the end of the search in the full DARTS

space. This is the likely cause of the stronger performance of SoTL-DARTS-20 when

using the DARTS evaluation protocol compared to SoTL-DARTS-8. The just de-

scribed experiments yield a concrete example of the depth gap that aligns well with

the intuition that skip connections should be picked more as the search network gets

deeper. Our best SoTL-DARTS-8 and SoTL-DARTS-20 cells are visualized in Figure

4.11.

Some prior work such as PDARTS (Chen et al., 2019) or DrNAS (Chen et al., 2021)

also tries to solve the depth gap issue by using progressive deepening schedules, in

64

which some parts of the operations set are discarded while the network is made deeper

during multiple phases of the search. This keeps the memory usage low overall. We

adapted this approach and evaluated SoTL-PDARTS, but found it unable to amend

the issue. The skip connections in particular already get discarded during the early

phases of the search while the search network is still shallow, and as a result, they

can never get selected at the end. Therefore, the final architecture still has zero skip

connections. From Table 4.8, we also see that the performance of SoTL-PDARTS

is especially poor with only 3.19% best test accuracy. While PDARTS (Chen et al.,

2019) has a strong performance of 2.50%, the authors noted that it was necessary

to manually restrict the number of skip connections in the final architecture since

it would give poor performances otherwise. Meanwhile, the deepened DARTS-20

(first-order) reached 2.89% without any special treatment of skip connections, which

is significantly better than the baseline at 3.00%. Using the full-depth search thus

appears to yield better performances than the progressive deepening without any

other adjustments for both SoTL and normal DARTS.

As noted, the architectures found by progressive deepening are quite different from

those that were discovered using full depth search from the start. The full depth search

therefore appears necessary to properly alleviate the depth gap, and even though the

algorithmic changes in PDARTS can provide performance gains, those might not

necessarily be due to reducing the depth gap. While most DARTS-related literature

implicitly assumes that the architectural optimum in the search with 8 layers network

is the same as when evaluating with a 20 layers network, our observations regarding

skip connections in SoTL-DARTS show that this is not the case. Instead, we suggest

that a promising avenue for improvement in differentiable NAS is to focus on searching

without any depth gap. This can be particularly feasible from a memory standpoint

when using techniques such as gradient accumulation, which might lead to higher

running times of algorithms, or partial channels connection similar to PC-DARTS

(Xu et al., 2019).

4.3.4 Bias towards shallow architectures

In this Section and Section 4.3.5, we conclude our investigation of SoTL-DARTS by

applying several heuristics designed to explain the behavior of DARTS. We show that

the observations from prior work do not apply to SoTL-DARTS, and the predictions

made therein might even be the opposite of what happens in practice. First, we

previously discussed the effect of network depth measured on the macro level by

considering the number of stacked layers, which is determined as a hyperparameter

65

(a) SoTL-DARTS-8 - normal cell

(b) SoTL-DARTS-20 - normal cell

(c) SoTL-DARTS-8 - reduction cell

(d) SoTL-DARTS-20 - reduction cell

Figure 4.11: Overview of the best normal and reduction cells found by SoTL-DARTS-
8 and SoTL-DARTS-20 on the DARTS search space.

outside of the search. We now also demonstrate that SoTL-DARTS has surprisingly

different biases from DARTS even within the topology of an individual cell, which is

determined by the search itself.

Shu et al. (2020) show that weight-sharing NAS algorithms including DARTS

tend to prefer shallow rather than deep architectures. This behavior is explained

by shallow architectures having smoother loss landscapes, which makes them easier

to train and thus easier to find with DARTS because it tries to optimize loss one

step ahead. However, deeper architectures might have stronger final generalization

performance despite being harder to train (He et al., 2016; Li et al., 2018a). Likewise,

Zhou et al. (2020) have shown both theoretically and empirically that architectures

with more skip connections tend to be easier to train initially but plateau at higher

loss than their more parameter-heavy counterparts. Shallow architectures with lots of

skip connections should therefore train especially fast, which can potentially explain

why the greedy gradient-based search in DARTS overfits to them.

Following the same intuition, optimizing the training rather than validation loss

in the architecture updates of DARTS should further exacerbate the bias towards

skip connections and shallow models provided that the reason behind the bias is

that such architectures train faster. However, Figure 4.13 shows that SoTL-DARTS

selects significantly deeper architectures than baseline DARTS. Our methodology for

66

(a) S2 - test acc. (b) S2 - # of skip

(c) DARTS space - test acc. (d) DARTS space - # of skip and param-free
ops

Figure 4.12: Comparison of the predicted performances on the S2 and DARTS search
spaces for DARTS-20 and SoTL-DARTS-20. While increasing the number of layers
makes the skip connection collapse worse for DARTS, we find that it improves the
search for SoTL-DARTS and results in a moderate amount of skip connections.

investigating the cell topology is the same as proposed by Shu et al. (2020), who

define the cell depth as the length of the longest path from the input to output nodes

in the cell. Moreover, we noted in Section 4.3.2 that SoTL-DARTS only rarely picks

any skip connections throughout the whole search, and it generally finishes the search

with very few or zero parameter-free operations overall. This contradicts the notion

that skip connections are so prominent because they increase the training speed. As

an additional point of interest, we note from Figure 4.11 that the 20 layers search

tends to pick shallower cells compared to the 8 layers one. The low 8 layers depth,

which is set as a hyperparameter, appears to get compensated by the search preferring

deeper individual cells.

In fact, the poor performance of SoTL-DARTS on NASBench-1shot1 is also caused

by finding architectures with excessive depth. Figure 4.14 compares the depth, ac-

67

(a) DARTS space - Normal cell (b) DARTS space - Reduction cell

Figure 4.13: Comparison of the depth trajectory between DARTS and SoTL-DARTS
search on the DARTS search space. While baseline DARTS is biased towards shallow
architectures, architectures found by SoTL-DARTS are significantly deeper through-
out the whole search for both normal and reduction cells shown in a) and b), respec-
tively. The range of depth in the DARTS space is [2, 5], hence DARTS attains the
minimum depth possible in the normal cell.

curacy of selected architectures and operation choices for DARTS and SoTL-DARTS

on NB101-3. While both algorithms choose architectures with conv 3x3 as the most

frequent operation, DARTS ultimately converges towards a topology with minimum

depth while SoTL-DARTS instead has maximum depth. The high depth causes the

CIFAR10 accuracy of the final architecture selected by SoTL-DARTS to be below 89%

in NB101-3, but simply making the architecture shallower would have been enough

to get the accuracy above 93%. This is the case for DARTS at around epoch 25

in Figure 4.14 when all the seeds have chosen 5x conv 3x3 out of 5 total operation

choices, and the average performance is 92.9% because the architecture is shallow.

SoTL-DARTS also chooses 5x conv 3x3, but because the architecture gets deeper over

time, the performance keeps decreasing.

However, we note that the NASBench-101 test accuracies might be potentially

misleading because all the architectures were trained for 108 epochs only. Deeper

architectures are known to require longer training schedules (He et al., 2016; Zhou

et al., 2020), and the performance of the deep architectures found by SoTL-DARTS

might thus be understated by the benchmark. Verifying whether the NASBench-101

parameter settings consistently favor shallow cells would be an interesting question

for future work.

Nonetheless, it appears that optimizing SoTL rather than validation loss consis-

tently makes the cell topology deeper rather than wider, which is in contrast to the

predictions made by Shu et al. (2020). Interestingly, it also shows that the overfitting

68

problem in the DARTS-family of algorithms is not necessarily limited to the opera-

tions set but also the topology. However, mainstream NAS research generally ignores

concerns about cell topology as the focus tends to be on preventing the skip connec-

tion collapse that is so prominent in normal DARTS. In particular, we suspect that

the topology issue is caused by the edge selection in DARTS being optimized only

very indirectly. To recapitulate the process, each node in the cell DAG retains the

top-2 incoming edge operations. However, the incoming multi-edges from different

nodes of the graph do not directly compete with each other in any way. Meanwhile,

the within-multi-edge operations are all engaged in the architecture softmax from

Eq. (3.8). Therefore, it is not obvious whether the highest weight incoming edges are

globally the most important because there is no mechanism to enforce that behavior.

We refer to Figure 3.4 for an intuitive visualization of how the multi-edges have local

within-multi-edge competition but no global across-multi-edge competition. Hence

even if SoTL-DARTS can consistently improve the within-multi-edge operation se-

lection by preventing skip connection collapse, this might lead to unpredictable and

potentially suboptimal changes in the cell topology.

Several recently proposed DARTS variants can be interpreted in the context of

implicitly improving cell topology. Doing DARTS architecture selection via iterative

pruning (Wang et al., 2021) can be understood as a way of performing topology-

aware architecture selection since the supernetwork jointly adapts to the changes in

operation set and topology during the pruning. This is unlike in normal DARTS,

in which the argmax selection magnitude prunes the whole network at once. Other

recently proposed NAS optimization methods that encourage edge sparsity such as

GAEA (Li et al., 2021) or use different architecture encoding and selection procedure,

such as FairDARTS (Chu et al., 2020), can also be seen as influencing the topology

selection. Whether it would be possible to directly treat the within-cell depth bias of

SoTL-DARTS by applying some of those methods is an exciting direction for future

work.

4.3.5 Eigenvalues of the architecture Hessian

Zela et al. (2019) argue that the skip connection overfitting and general deterioration

of the DARTS selected architectures is related to the growing dominant eigenvalues

of the architecture Hessian computed on the validation set. Intuitively, the increasing

architecture eigenvalues mean that the found solutions are in progressively sharper

regions. Higher sharpness should increase the disparity between the supernetwork

performance and the performance of discretized architectures. This is because the

69

(a) CIFAR10 test accuracy (b) Depth (c) # of 3× 3 convolutions

Figure 4.14: a) SoTL-DARTS only gets worse over time on NB101-3 whereas baseline
DARTS achieves top tier performance. In b) and c), we show that the root cause
is the excessively deep cell topology in SoTL-DARTS since both algorithms select
3× 3 conv for majority of the 5 operation choices.

network accuracy with respect to perturbing the architecture parameters changes

more quickly in sharper regions, and the discretization can be understood simply as

a large perturbation, in which we set most of the architecture coefficients to zero.

However, this intuition holds primarily for the case where we evaluate discretized

architectures using the weights inherited from the supernetwork. The usual DARTS

evaluation protocol instead retrains the selected architecture from scratch. The ar-

chitecture selection via argmax is by itself so non-smooth that local curvature might

yield no substantial information on the ground truth performance of selected archi-

tectures. Nonetheless, the efficiency of several methods such as SDARTS (Chen et

al., 2020b) or DrNAS (Chen et al., 2021) has been justified by them regularizing the

growth of architecture eigenvalues.

Specifically, Zela et al. (2019) were the first to propose the reduced search space

S2 = {skip connection, 3 × 3 sep. conv.}. Using this search space, they showed that

the architecture overfitting coincides with a rise in eigenvalues. First, we reproduce

this result and then extend it to the full DARTS search space. For SoTL-DARTS,

we measure the architecture eigenvalues on the training set as no validation set is

used for the training. Figure 4.15 shows the evolution of the dominant eigenvalues

and predicted performance via NASBench-301 for both DARTS and SoTL-DARTS on

the S2 space. We previously observed that SoTL-DARTS chooses no skip connections

whatsoever. Now, we also see that its architecture eigenvalues do not increase, and the

performance of selected architectures shows no sign of architecture overfitting even at

the end of the search. Meanwhile, normal DARTS picks 11 out of 16 total operation

choices as skip connections, and its performance deteriorates along with exploding

eigenvalues. However, the predicted performance of SoTL-DARTS is actually quite

low because having at least some skip connections would be helpful. That said, we

70

(a) S2 - dom. eigenvalue (b) S2 - CIFAR10 test acc. (c) S2 - # of skip

Figure 4.15: a) The dominant eigenvalue of the architecture Hessian ∇2
ααLval rises

during search on the S2 search space for DARTS, but not for SoTL-DARTS. In b)
and c), we see that SoTL-DARTS does not overfit to skip connections and its selected
architecture performance does not deteriorate.

have already shown that SoTL-DARTS picks more skip connections when the search

architecture is deeper in Section 4.3.3.

Figure 4.16 shows the same experiment on the full DARTS search space. This

time, the growth of the dominant architecture eigenvalue is even stronger for SoTL-

DARTS than for normal DARTS. Despite that, the SoTL-DARTS search achieves a

strong performance that does not decrease over training. We were not able to verify

by retraining that the performance is not getting worse for SoTL-DARTS, and we only

show the search trajectory provided by NASBench-301. However, we already saw in

Table 4.8 that the test set performance of the final SoTL-DARTS architecture is better

than baseline DARTS. Furthermore, Figure 4.16 also shows the same experiment

on NASBench-201. The eigenvalues again rise for both algorithms during training,

but the performance of SoTL-DARTS peaks at the end of training, whereas the

performance of DARTS keeps declining until it overfits to all skip connections. Finally,

Figures 4.16e and 4.16f show that on NASBench-1shot1, the eigenvalues go down for

SoTL-DARTS and up for DARTS, and the final architecture performance has exactly

the same trend.

Considering the results of both DARTS and SoTL-DARTS in tandem, it appears

that the negative correlation between architecture eigenvalues and performance of

selected architecture might be spurious. We saw that the correlation can occur inde-

pendently of whether the search overfits to skip connections, and it does not seem to

necessarily indicate a drop in architecture performance. However, based on only the

results of normal DARTS, it might indeed appear that the eigenvalues are negatively

correlated with the final performance, and using only the results of SoTL-DARTS

might potentially suggest a positive correlation. Therefore, it is likely that the eigen-

values are independent of the architecture overfitting.

71

(a) DARTS space - dom. eigenvalue (b) DARTS space - CIFAR10 test acc.

(c) NB201 - dom. eigenvalue (d) NB201 - CIFAR10 test acc.

(e) NB101-3 - dom. eigenvalue (f) NB101-3 - CIFAR10 test acc.

Figure 4.16: a) and c) show that the dominant eigenvalue of the architecture Hessian
∇2
ααLval rises during training for both DARTS and SoTL-DARTS on the DARTS

space and NASBench-201. However, b) and d) demonstrate that SoTL-DARTS per-
formance keeps increasing whereas DARTS starts overfitting to skip connections. e)
and f) show the results on NASBench-1shot1, where the performance of SoTL-DARTS
is weak and its eigenvalues simultaneously decrease. Meanwhile, DARTS has good
performance with increasing eigenvalues.

72

Chapter 5

Conclusion

This thesis investigated the possibility of applying Sum-over-Training-Losses (SoTL),

a new generalization estimator with a principled Bayesian model selection interpreta-

tion, to weight-sharing neural architecture search (NAS). While the theoretical back-

ground of the estimator only strictly applies to linear models, it has previously been

demonstrated to be useful for NAS in the non-weight-sharing setting. We extended

those results by showing that the estimator can be applied as a drop-in replacement

for validation set metrics in the most popular weight-sharing NAS algorithms includ-

ing SPOS (Guo et al., 2020) and DARTS (Liu et al., 2018).

We performed several experiments to prove the efficacy of our proposed methods.

First, we designed synthetic benchmarks that either mirror the theoretical guarantees

of SoTL or replicate small-scale experiments from gradient-based hyperparameter

optimization. In both, we have shown that SoTL significantly outperforms validation

loss as a metric to optimize for.

Next, we reached similar conclusions when applying SoTL to architecture selection

in the final phase of SPOS, in which architectures are ranked by their validation

accuracy to find the top-1 best architecture. We replaced evaluation via validation

accuracy by a short training phase to collect SoTL, which was then used to rank the

candidate architectures. This was enough to significantly improve the performance

across multiple benchmarks from the NASBench series. Similarly, SoTL-DARTS was

shown to have significantly stronger performance than baseline DARTS across a suite

of benchmarks, and optimizing SoTL alleviated many long-standing problems known

to occur in DARTS, such as the skip connection collapse. For DARTS specifically, we

developed an approximation to the exact SoTL gradient that performs well despite

being computationally cheap.

Moreover, our results uncovered several intriguing observations about the biases in

weight-sharing NAS. For the SPOS family of algorithms, we have shown that ranking

73

disorder is not necessarily the primary obstacle in one-shot NAS as most related work

assumes. Instead, our results suggest there is a distinct difference between ranking

median and top-k architectures. This idea has seen a surge in interest recently,

and we contributed a novel perspective because other work generally does not do any

finetuning of the supernetwork weights. We have also described a novel interpretation

of one-shot NAS with SoTL as meta-learning and shown that simply reusing the

existing meta-learning algorithms is competitive with the performance of specialized

NAS algorithms. Furthermore, we have shown that the meta-learning algorithms

can be integrated into state-of-the-art one-shot NAS algorithms to increase their

performance further.

We also found that SoTL-DARTS behaves differently compared to baseline DARTS.

Prior work has tried to explain the behavior of DARTS by appealing to the properties

of its Hessian spectrum or identifying its bias towards shallow architectures. However,

the observations in prior literature do not hold for SoTL-DARTS, and the predictions

made therein sometimes even contradict the results obtained with SoTL-DARTS in

practice. Interestingly, while overfitting to skip connections is a major pain point of

DARTS, SoTL-DARTS is completely free of this problem. We also investigated the

role of depth and topology in the DARTS search and demonstrated specific exam-

ples of topology overfitting. Topology is often ignored in differentiable NAS, perhaps

because the skip connection collapse in normal DARTS overshadows it.

In summary, we have shown that SoTL is practically useful for weight-sharing

NAS, trivial to implement and often even cheaper compute-wise than existing ap-

proaches. It can be applied to most popular NAS algorithms as a drop-in replacement

for validation set metrics. It has no sensitive hyperparameters, and using it tends to

stabilize the search significantly. We also identified several promising research di-

rections including the usage of supernetwork finetuning to diagnose weight-sharing

biases, usage of general meta-learning algorithms for one-shot NAS training, and ex-

plicitly accounting for the role of depth and architecture topology in DARTS. Those

remain as exciting extensions for future work.

74

Appendices

75

Appendix A

SoTL-DARTS implementation

We showcase an example PyTorch implementation of Algorithm 3 (SoTL-DARTS) to

demonstrate that SoTL is very easy to implement on top of standard training loops.

The most important part is on lines 12-17, which show that it is trivial to accumu-

late the approximate SoTL gradient by not zeroing out the architecture gradients

after each weight update. All implementations of SoTL-DARTS variants proceed

analogously to this example.

1 def train_sotl(train_queue, network, criterion, w_optimizer, a_optimizer, T=100):

2 train_iter = iter(train_queue)

3 network.train()

4

5 for unrolling_step in range(math.ceil(len(train_queue)/T)):

6 # format_input_data outputs a list of T (input, output) pairs

7 all_base_inputs, all_base_targets = format_input_data(train_iter, T=T)

8 network.zero_grad()

9 model_init = deepcopy(network.state_dict()) # Save weights before unrolling so they can be restored later

10

11 # Step 1 of Algorithm 3 - do the unrolling over 100 steps to collect SoTL gradient

12 for (base_inputs, base_targets) in zip(all_base_inputs, all_base_targets):

13 logits = network(base_inputs)

14 base_loss = criterion(logits, base_targets)

15 base_loss.backward()

16 w_optimizer.step() # Train the weights during unrolling as normal,

17 w_optimizer.zero_grad() # but the architecture gradients are not zeroed during the unrolling

18

19

20 # Step 2 of Algorithm 3 - update the architecture encoding using accumulated gradients

21 a_optimizer.step()

22

23 a_optimizer.zero_grad() # Reset to get ready for new unrolling

24 w_optimizer.zero_grad()

25

26 new_arch_params = deepcopy(network.arch_params) # Temporary backup for new architecture encoding

27

28 network.load_state_dict(model_init) # Old weights are loaded, which also reverts the architecture encoding

29 for p1, p2 in zip (network.arch_params, new_arch_params):

30 p1.data = p2.data

31

32 # Step 3 of Algorithm 3 - training weights after updating the architecture encoding

33 for (base_inputs, base_targets) in zip(all_base_inputs, all_base_targets):

34 logits = network(base_inputs)

35 base_loss = criterion(logits, base_targets)

36 base_loss.backward()

37 w_optimizer.step()

76

38

39 w_optimizer.zero_grad()

40 a_optimizer.zero_grad()

77

Appendix B

NASBench default
hyperparameters

We briefly summarize the most important hyperparameter settings relevant to both

one-shot NAS search and DARTS in our experiments. Note that all the search spaces

use very similar defaults, which were originally designed by Liu et al. (2018). Fur-

thermore, one-shot and DARTS share most of the parameters. The parameters for

architecture optimizers are applicable to DARTS only.

NASBench-201 NASBench-1shot1 DARTS space

Batch size 64 64 64
LR scheduler Cosine Cosine Cosine
LR max 0.025 0.025 0.025
LR min 0.001 0.001 0.001
Optimizer SGD SGD SGD
Weight decay 0.0005 0.0003 0.0003
Momentum 0.9 0.9 0.9

Epochs
100 (one-shot)
50 (DARTS)

50
100 (one-shot)
50 (DARTS)

Arch. LR 0.0003 0.0003 0.0003
Arch. weight decay 0.001 0.001 0.001
Arch. optimizer Adam Adam Adam

Table B.1: Summary of hyperparameters for both one-shot NAS search and DARTS
across all the benchmark search spaces we used in this work.

78

Bibliography

Abdelfattah, Mohamed S. et al. (2021). “Zero-Cost Proxies for Lightweight NAS”.
In: International Conference on Learning Representations (ICLR).

Arora, Sanjeev et al. (July 3, 2018). “Stronger Generalization Bounds for Deep Nets
via a Compression Approach”. In: International Conference on Machine Learning.
International Conference on Machine Learning. ISSN: 2640-3498. PMLR, pp. 254–
263.

Baker, Bowen et al. (Nov. 8, 2017). “Accelerating Neural Architecture Search using
Performance Prediction”. In: arXiv:1705.10823 [cs]. arXiv: 1705.10823.

Bartlett, Peter L., Dylan J. Foster, and Matus J. Telgarsky (2017). “Spectrally-
normalized margin bounds for neural networks”. In: Advances in Neural Infor-
mation Processing Systems 30.

Baydin, Atilim Gunes et al. (2018a). “Automatic Differentiation in Machine Learning:
a Survey”. In: Journal of Machine Learning Research 18.153, pp. 1–43. issn: 1533-
7928.

Baydin, Atilim Gunes et al. (2018b). “Online Learning Rate Adaptation with Hyper-
gradient Descent”. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Bender, Gabriel et al. (2018). “Understanding and simplifying one-shot architecture
search”. In: International Conference on Machine Learning. PMLR, pp. 550–559.

Benyahia, Yassine et al. (2019). “Overcoming multi-model forgetting”. In: Interna-
tional Conference on Machine Learning. PMLR, pp. 594–603.

Bergstra, James and Yoshua Bengio (2012). “Random Search for Hyper-Parameter
Optimization”. In: Journal of Machine Learning Research 13.10, pp. 281–305.
issn: 1533-7928.

Breiman, Leo (Oct. 1, 2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32.
issn: 1573-0565. doi: 10.1023/A:1010933404324.

Brown, Tom et al. (2020). “Language Models are Few-Shot Learners”. In: Advances
in Neural Information Processing Systems 33, pp. 1877–1901.

Cai, Han, Ligeng Zhu, and Song Han (2019a). “ProxylessNAS: Direct Neural Archi-
tecture Search on Target Task and Hardware”. In: International Conference on
Learning Representations.

Cai, Han et al. (2019b). “Once-for-All: Train One Network and Specialize it for Effi-
cient Deployment”. In: International Conference on Learning Representations.

79

https://arxiv.org/abs/1705.10823
https://doi.org/10.1023/A:1010933404324

Chen, Mark et al. (2020a). “Generative pretraining from pixels”. In: International
Conference on Machine Learning. PMLR, pp. 1691–1703.

Chen, Xiangning and Cho-Jui Hsieh (2020b). “Stabilizing differentiable architecture
search via perturbation-based regularization”. In: International Conference on
Machine Learning. PMLR, pp. 1554–1565.

Chen, Xiangning et al. (2021). “Dr{NAS}: Dirichlet Neural Architecture Search”. In:
International Conference on Learning Representations.

Chen, Xin et al. (2019). “Progressive differentiable architecture search: Bridging the
depth gap between search and evaluation”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1294–1303.

Chu, Xiangxiang et al. (2019). “Fairnas: Rethinking evaluation fairness of weight
sharing neural architecture search”. In: arXiv preprint arXiv:1907.01845.

Chu, Xiangxiang et al. (2020). “Fair darts: Eliminating unfair advantages in dif-
ferentiable architecture search”. In: European Conference on Computer Vision.
Springer, pp. 465–480.

Convolutional neural network (Aug. 4, 2021). In: Wikipedia. Page Version ID: 1037144532.
Deng, Jia et al. (June 2009). “ImageNet: A large-scale hierarchical image database”.

In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009
IEEE Conference on Computer Vision and Pattern Recognition. ISSN: 1063-6919,
pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

Domhan, Tobias, Jost Tobias Springenberg, and Frank Hutter (2015). “Speeding up
automatic hyperparameter optimization of deep neural networks by extrapolation
of learning curves”. In: Twenty-fourth international joint conference on artificial
intelligence.

Dong, Xuanyi and Yi Yang (2019a). “One-shot neural architecture search via self-
evaluated template network”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3681–3690.

— (2019b). “Searching for a robust neural architecture in four gpu hours”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 1761–1770.

— (2020). “NAS-Bench-201: Extending the Scope of Reproducible Neural Architec-
ture Search”. In: International Conference on Learning Representations (ICLR).

Dong, Xuanyi et al. (2021). “NATS-Bench: Benchmarking NAS Algorithms for Ar-
chitecture Topology and Size”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI). doi: 10.1109/TPAMI.2021.3054824.

Dosovitskiy, Alexey et al. (June 3, 2021). “An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale”. In: arXiv:2010.11929 [cs]. arXiv: 2010.
11929.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (July 17, 2017). “Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks”. In: International Confer-
ence on Machine Learning. International Conference on Machine Learning. ISSN:
2640-3498. PMLR, pp. 1126–1135.

Fisher, R. A. (1922). “The Goodness of Fit of Regression Formulae, and the Distribu-
tion of Regression Coefficients”. In: Journal of the Royal Statistical Society 85.4.

80

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/TPAMI.2021.3054824
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

Publisher: [Wiley, Royal Statistical Society], pp. 597–612. issn: 0952-8385. doi:
10.2307/2341124.

Fisher, Ronald Aylmer (1938). Statistical methods for research workers. In collab. with
Internet Archive. Edinburgh, Oliver and Boyd. 386 pp. isbn: 978-0-05-002170-5.

Fort, Stanislav et al. (Mar. 13, 2020). “Stiffness: A New Perspective on Generalization
in Neural Networks”. In: arXiv:1901.09491 [cs, stat]. arXiv: 1901.09491.

Fu, Jie et al. (Apr. 6, 2016). “DrMAD: Distilling Reverse-Mode Automatic Differentia-
tion for Optimizing Hyperparameters of Deep Neural Networks”. In: arXiv:1601.00917
[cs]. arXiv: 1601.00917.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (Nov. 18, 2016). Deep Learn-
ing. Red. by Francis Bach. Adaptive Computation and Machine Learning series.
Cambridge, MA, USA: MIT Press. 800 pp. isbn: 978-0-262-03561-3.

Guo, Zichao et al. (2020). “Single path one-shot neural architecture search with uni-
form sampling”. In: European Conference on Computer Vision. Springer, pp. 544–
560.

He, Chaoyang et al. (2020). “MiLeNAS: Efficient Neural Architecture Search via
Mixed-Level Reformulation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11993–12002.

He, Kaiming et al. (June 2016). “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
ISSN: 1063-6919, pp. 770–778. doi: 10.1109/CVPR.2016.90.

Jiang, Yiding et al. (Apr. 2020). “Fantastic Generalization Measures and Where to
Find Them”. In: Eighth International Conference on Learning Representations.

Keskar, Nitish Shirish et al. (2017). “On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima”. In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Krizhevsky, Alex (May 8, 2012). “Learning Multiple Layers of Features from Tiny
Images”. In: University of Toronto.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1.
NIPS’12. event-place: Lake Tahoe, Nevada. Red Hook, NY, USA: Curran Asso-
ciates Inc., pp. 1097–1105.

Lecun, Y. et al. (1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11, pp. 2278–2324. doi: 10.1109/5.726791.

Lewkowycz, Aitor et al. (Mar. 4, 2020). “The large learning rate phase of deep learn-
ing: the catapult mechanism”. In: arXiv:2003.02218 [cs, stat]. arXiv: 2003.02218.

Li, Hao et al. (2018a). “Visualizing the Loss Landscape of Neural Nets”. In: Advances
in Neural Information Processing Systems 31.

Li, Liam and Ameet Talwalkar (2020). “Random search and reproducibility for neural
architecture search”. In: Uncertainty in Artificial Intelligence. PMLR, pp. 367–
377.

81

https://doi.org/10.2307/2341124
https://arxiv.org/abs/1901.09491
https://arxiv.org/abs/1601.00917
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/2003.02218

Li, Liam et al. (2021). “Geometry-Aware Gradient Algorithms for Neural Architec-
ture Search”. In: 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

Li, Lisha et al. (June 18, 2018b). “Hyperband: A Novel Bandit-Based Approach to Hy-
perparameter Optimization”. In: arXiv:1603.06560 [cs, stat]. arXiv: 1603.06560.

Li, Yuanzhi, Colin Wei, and Tengyu Ma (2019). “Towards Explaining the Regular-
ization Effect of Initial Large Learning Rate in Training Neural Networks”. In:
Advances in Neural Information Processing Systems 32.

Liu, Hanxiao, Karen Simonyan, and Yiming Yang (2018). “DARTS: Differentiable
Architecture Search”. In: International Conference on Learning Representations.

Long, Philip M. and Hanie Sedghi (Apr. 2020). “Generalization bounds for deep
convolutional neural networks”. In: Eighth International Conference on Learning
Representations.

Luketina, Jelena et al. (June 11, 2016). “Scalable Gradient-Based Tuning of Con-
tinuous Regularization Hyperparameters”. In: International Conference on Ma-
chine Learning. International Conference on Machine Learning. ISSN: 1938-7228.
PMLR, pp. 2952–2960.

Lyle, Clare et al. (2020). “A Bayesian Perspective on Training Speed and Model
Selection”. In: Advances in Neural Information Processing Systems. Ed. by H.
Larochelle et al. Vol. 33. Curran Associates, Inc., pp. 10396–10408.

MacKay, David J. C. (2002). Information Theory, Inference & Learning Algorithms.
USA: Cambridge University Press. isbn: 0-521-64298-1.

Maclaurin, Dougal, David Duvenaud, and Ryan Adams (June 1, 2015). “Gradient-
based Hyperparameter Optimization through Reversible Learning”. In: Interna-
tional Conference on Machine Learning. International Conference on Machine
Learning. ISSN: 1938-7228. PMLR, pp. 2113–2122.

Matthews, Alexander G de G et al. (2017). “Sample-then-optimize posterior sampling
for bayesian linear models”. In: NIPS Workshop on Advances in Approximate
Bayesian Inference.

Mellor, Joseph et al. (2021). “Neural Architecture Search without Training”. In: In-
ternational Conference on Machine Learning.

Mikolov, Tomas et al. (2013). “Distributed Representations of Words and Phrases and
their Compositionality”. In: Advances in Neural Information Processing Systems
26.

Murphy, Kevin P. (Aug. 24, 2012). Machine Learning: A Probabilistic Perspective.
Red. by Francis Bach. Adaptive Computation and Machine Learning series. Cam-
bridge, MA, USA: MIT Press. 1104 pp. isbn: 978-0-262-01802-9.

Mysid, Dake (Nov. 28, 2006). A simplified view of an artifical neural network.
Nair, Vinod and Geoffrey E. Hinton (June 21, 2010). “Rectified linear units improve

restricted boltzmann machines”. In: Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning. ICML’10. Madison, WI,
USA: Omnipress, pp. 807–814. isbn: 978-1-60558-907-7.

Nakkiran, Preetum, Behnam Neyshabur, and Hanie Sedghi (Sept. 28, 2020). “The
Deep Bootstrap Framework: Good Online Learners are Good Offline Generaliz-
ers”. In: International Conference on Learning Representations.

82

https://arxiv.org/abs/1603.06560

Neyshabur, Behnam, Ryota Tomioka, and Nathan Srebro (June 26, 2015). “Norm-
Based Capacity Control in Neural Networks”. In: Conference on Learning Theory.
Conference on Learning Theory. ISSN: 1938-7228. PMLR, pp. 1376–1401.

Nichol, Alex, Joshua Achiam, and John Schulman (Oct. 22, 2018). “On First-Order
Meta-Learning Algorithms”. In: arXiv:1803.02999 [cs]. arXiv: 1803.02999.

Osband, Ian, John Aslanides, and Albin Cassirer (2018). “Randomized Prior Func-
tions for Deep Reinforcement Learning”. In: Advances in Neural Information Pro-
cessing Systems 31.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.

Pham, Hieu et al. (July 3, 2018). “Efficient Neural Architecture Search via Param-
eters Sharing”. In: International Conference on Machine Learning. International
Conference on Machine Learning. ISSN: 2640-3498. PMLR, pp. 4095–4104.

Rasmussen, Carl Edward and Zoubin Ghahramani (Jan. 1, 2000). “Occam’s Razor”.
In: Proceedings of the 13th International Conference on Neural Information Pro-
cessing Systems. NIPS’00. Cambridge, MA, USA: MIT Press, pp. 276–282.

Real, Esteban et al. (2019). “Regularized evolution for image classifier architecture
search”. In: Proceedings of the aaai conference on artificial intelligence. Vol. 33.
Issue: 01, pp. 4780–4789.

Ru, Binxin et al. (June 8, 2020). “Revisiting the Train Loss: an Efficient Performance
Estimator for Neural Architecture Search”. In: arXiv:2006.04492 [cs, stat]. arXiv:
2006.04492.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (Oct. 1986).
“Learning representations by back-propagating errors”. In: Nature 323.6088. Bandiera abtest:
a Cg type: Nature Research Journals Number: 6088 Primary atype: Research Pub-
lisher: Nature Publishing Group, pp. 533–536. issn: 1476-4687. doi: 10.1038/
323533a0.

Schölkopf, Bernhard et al. (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Google-Books-ID: y8ORL3DWt4sC.
MIT Press. 658 pp. isbn: 978-0-262-19475-4.

Shu, Yao, Wei Wang, and Shaofeng Cai (Apr. 2020). “Understanding Architectures
Learnt by Cell-based Neural Architecture Search”. In: Eighth International Con-
ference on Learning Representations.

Siems, Julien et al. (Nov. 5, 2020). “NAS-Bench-301 and the Case for Surrogate
Benchmarks for Neural Architecture Search”. In: arXiv:2008.09777 [cs]. arXiv:
2008.09777.

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: International Conference on Learning
Representations.

Singh, Prabhant et al. (2019). “A Study of the Learning Progress in Neural Architec-
ture Search Techniques”. In: ArXiv abs/1906.07590.

Smith, Samuel L. and Quoc V. Le (2018). “A Bayesian Perspective on Generalization
and Stochastic Gradient Descent”. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

83

https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/2006.04492
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://arxiv.org/abs/2008.09777

Smith, Samuel L. et al. (Sept. 28, 2020). “On the Origin of Implicit Regularization
in Stochastic Gradient Descent”. In: International Conference on Learning Rep-
resentations.

Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams (Aug. 29, 2012). “Practical
Bayesian Optimization of Machine Learning Algorithms”. In: arXiv:1206.2944
[cs, stat]. arXiv: 1206.2944.

Snoek, Jasper et al. (July 13, 2015). “Scalable Bayesian Optimization Using Deep
Neural Networks”. In: arXiv:1502.05700 [stat]. arXiv: 1502.05700.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural
Information Processing Systems 30.

Wang, Ruochen et al. (2021). “RETHINKING ARCHITECTURE SELECTION IN
DIFFER-ENTIABLE NAS”. In: International Conference on Learning Represen-
tations.

Wu, Yuhuai et al. (2018). “Understanding Short-Horizon Bias in Stochastic Meta-
Optimization”. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Xie, Sirui et al. (2019). “SNAS: stochastic neural architecture search”. In: 7th Inter-
national Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Xu, Yuhui et al. (2019). “PC-DARTS: Partial Channel Connections for Memory-
Efficient Architecture Search”. In: International Conference on Learning Repre-
sentations.

Yang, Antoine, Pedro M. Esperança, and Fabio M. Carlucci (Apr. 2020). “NAS eval-
uation is frustratingly hard”. In: Eighth International Conference on Learning
Representations.

Ying, Chris et al. (2019). “Nas-bench-101: Towards reproducible neural architecture
search”. In: International Conference on Machine Learning. PMLR, pp. 7105–
7114.

You, Shan et al. (2020). “Greedynas: Towards fast one-shot nas with greedy supernet”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1999–2008.

Yu, Jiahui and Thomas S. Huang (2019). “Universally Slimmable Networks and Im-
proved Training Techniques”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1803–1811.

Yu, Jiahui et al. (2020a). “Bignas: Scaling up neural architecture search with big
single-stage models”. In: European Conference on Computer Vision. Springer,
pp. 702–717.

Yu, Kaicheng, Rene Ranftl, and Mathieu Salzmann (Sept. 28, 2020b). “How to Train
Your Super-Net: An Analysis of Training Heuristics in Weight-Sharing NAS”. In:

Yu, Kaicheng et al. (Apr. 2020c). “Evaluating The Search Phase of Neural Architec-
ture Search”. In: Eighth International Conference on Learning Representations.

Zela, Arber, Julien Siems, and Frank Hutter (Apr. 2020). “NAS-Bench-1Shot1: Bench-
marking and Dissecting One-shot Neural Architecture Search”. In: Eighth Inter-
national Conference on Learning Representations.

84

https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/1502.05700

Zela, Arber et al. (2019). “Understanding and Robustifying Differentiable Architec-
ture Search”. In: International Conference on Learning Representations.

Zhang, Miao et al. (2020a). “Overcoming multi-model forgetting in one-shot nas with
diversity maximization”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 7809–7818.

Zhang, Miao et al. (June 20, 2021a). “iDARTS: Differentiable Architecture Search
with Stochastic Implicit Gradients”. In: arXiv:2106.10784 [cs]. arXiv: 2106.10784.

Zhang, Yuge, Quanlu Zhang, and Yaming Yang (May 5, 2021b). “How Does Supernet
Help in Neural Architecture Search?” In: arXiv:2010.08219 [cs]. arXiv: 2010.

08219.
Zhang, Yuge et al. (2020b). “Deeper insights into weight sharing in neural architecture

search”. In: arXiv preprint arXiv:2001.01431.
Zhou, Pan et al. (2019). “Efficient Meta Learning via Minibatch Proximal Update”.

In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al.
Vol. 32. Curran Associates, Inc.

Zhou, Pan et al. (2020). “Theory-Inspired Path-Regularized Differential Network
Architecture Search”. In: Advances in Neural Information Processing Systems.
Vol. 33. Curran Associates, Inc., pp. 8296–8307.

Zoph, Barret et al. (2018). “Learning transferable architectures for scalable image
recognition”. In: Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 8697–8710.

85

https://arxiv.org/abs/2106.10784
https://arxiv.org/abs/2010.08219
https://arxiv.org/abs/2010.08219

	Introduction
	Motivation
	Thesis structure

	Background
	Introduction to deep learning
	Neural architecture search

	Methodology
	SoTL
	General NAS experimental setup
	Search spaces
	Evaluation criteria

	Differentiable NAS
	DARTS
	Exact SoTL gradient
	Approximate SoTL gradient
	DARTS variants

	One-shot NAS
	Integrating SoTL into one-shot NAS
	One-shot NAS variants

	Results
	Synthetic benchmarks
	Gradient-based hyperparameter optimization
	Weight-sharing linear model

	Discretized one-shot NAS
	NASBench-201
	NASBench-1shot1 and DARTS search space
	The effect of learning rates
	Investigating the bias of high learning rates

	Differentiable NAS
	NASBench-201 and NASBench-1shot1
	DARTS search space
	Qualitative analysis of the discovered architectures
	Bias towards shallow architectures
	Eigenvalues of the architecture Hessian

	Conclusion
	SoTL-DARTS implementation
	NASBench default hyperparameters
	Bibliography

